Identificación y localización de daños en estructuras activas con la técnica de la impedancia electromecánica (EMI) enfocada al monitoreo de la integridad estructural (SHM)

dc.contributor.advisor Tinoco Navarro , Hector Andres
dc.contributor.author Marulanda Hurtado , Dairon José
dc.contributor.author Robledo Callejas , Leonardo
dc.date.accessioned 2023-03-14T19:44:49Z
dc.date.available 2023-03-14T19:44:49Z
dc.date.issued 2022
dc.description.abstract En esta tesis se presenta el uso de la técnica de impedancia electromecánica para la detección y localización de daños en estructuras activas bajo un enfoque de monitoreo estructural mediante pruebas experimentales. Dado que las señales obtenidas de las pruebas experimentales suelen presentar ruidos y grandes dispersiones, estas se homogenizan mediante las funciones de distribución normal, lo que permite estimar diferentes índices escalares para establecer la detección, cuantificación y localización de los daños cuando se comparan las señales capturadas de la estructura sin daño, denominada señal de referencia, con las de la estructura afectada por los daños, denominada señal de monitoreo. Se proponen tres pruebas experimentales en las que se inducen diferentes tipos de daño a las estructuras activas, y se usan transductores piezoeléctricos y un analizador de impedancia para detectar la presencia del daño, cuantificar su severidad y determinar su localización. En la primera prueba, los daños inducidos son marcas y perforaciones practicadas en el material de la estructura, con dimensiones controladas. La segunda prueba se realiza controlando dos tamaños para las perforaciones y cuatro distancias entre estas y el parche piezoeléctrico. Las mediciones de impedancia eléctrica son desacopladas tanto antes como después de inducir los daños en la estructura activa. En la última prueba, el daño estructural se formula como la pérdida de torque de apriete en uniones pernadas. Se encontró que los índices estadísticos usados son criterios adecuados para determinar la presencia del daño en la estructura, así como su severidad y su localización con respecto a la del transductor piezoeléctrico. Esto se concluye al observar las diferencias entre los índices calculados a partir de mediciones de impedancia eléctrica en la estructura intacta con respecto a las mediciones realizadas después de inducir daños en diferentes etapas y ubicaciones. spa
dc.description.abstract This thesis presents the use of the electro-mechanical impedance technique for the detection and localization of damage in active structures under a structural monitoring approach by means of experimental tests. Since the signals obtained from experimental tests usually present noises and large dispersions, these are homogenized by means of normal distribution functions, which allows estimating different scalar indices to establish the detection, quantification and localization of damage when comparing the signals captured from the undamaged structure, called reference signal, with those from the structure affected by damage, called monitoring signal. Three experimental tests are proposed in which different types of damage are induced to active structures, and piezoelectric transducers and an impedance analyzer are used to detect the presence of damage, quantify its severity, and determine its location. In the first test, the induced damages are marks and holes drilled in the material of the structure, with controlled dimensions. The second test is performed by controlling two sizes for the perforations and four distances between the perforations and the piezoelectric patch. Electrical impedance measurements are decoupled both before and after inducing damage to the active structure. In the last test, structural damage is formulated as the loss of tightening torque in bolted joints. It was found that the statistical indices used are adequate criteria to determine the presence of damage in the structure, as well as its severity and its location with respect to that of the piezoelectric transducer. This is concluded by observing the differences between the indices calculated from electrical impedance measurements on the undamaged structure with respect to measurements made after inducing damage at different stages and locations. eng
dc.description.degreelevel Maestría
dc.description.degreename Magíster en Sistemas Automáticos de Producción
dc.description.tableofcontents CONTENIDO CAPÍTULO 1 PRESENTACIÓN ............................................................................ 14 1.2 Justificación .......................................................................................... 16 1.3 Planteamiento del problema ................................................................. 17 1.4 Antecedentes ........................................................................................ 19 1.5 Objetivos ............................................................................................... 20 1.5.1 Objetivo general ............................................................................. 20 1.5.2 Objetivos específicos...................................................................... 21 1.6 Estructura de la tesis ............................................................................ 21 CAPÍTULO 2 IDENTIFICACIÓN DE DAÑOS EN PLACAS ACTIVAS CON ÍNDICES BASADOS EN ELIPSES DE CONFIANZA GAUSSIANAS OBTENIDAS DE LA ADMITANCIA ELECTROMECÁNICA ................................................................... 22 2.1 Introducción .......................................................................................... 22 2.2 Fundamentos teóricos........................................................................... 25 2.2.1 Impedancia electromecánica (EM) acoplada para transductores piezoeléctricos .............................................................................................. 25 2.2.2 Índices de daño basados en una distribución gaussiana normal ... 29 2.2.3 Estimación de la línea base de daño .............................................. 32 2.2.4 Índices RMSD y MAPD para la técnica EMI ................................... 33 2.3 Montaje experimental ............................................................................ 35 2.4 Resultados y discusión ......................................................................... 37 2.4.1 Prueba 1: Identificación de daños superficiales con el índice EDI . 37 2.4.2 Prueba 2: Identificación de daños con diferentes índices (EDI, R M y θ N ) 44 vii 2.4.3 Prueba 3: Identificación de daños a partir de una línea de base probabilística ................................................................................................. 50 CAPÍTULO 3 DETECCIÓN DE DAÑOS EN PLACAS ACTIVAS MEDIANTE LA TÉCNICA DE IMPEDANCIA ELECTROMECÁNICA BASADA EN MEDICIONES DESACOPLADAS DE TRANSDUCTORES PIEZOELÉCTRICOS ....................... 56 3.1 Introducción .......................................................................................... 56 3.2 Fundamentos teóricos........................................................................... 60 3.2.1 Desacople de la impedancia electromecánica (EM) considerando un circuito en paralelo ........................................................................................ 60 3.2.2 Índice Hr basado en una elipse de confianza gaussiana .............. 63 3.3 Metodologías de detección de daños ................................................... 64 3.3.1 Metodología de identificación de daños usando la reactancia ( X ) 64 3.3.2 Metodología de localización de daños mediante la resistencia ( R ) 67 3.4 Montaje experimental ............................................................................ 70 3.5 Resultados y discusión ......................................................................... 72 3.5.1 Identificación de los daños ............................................................. 72 3.5.2 Identificación y localización de daños ............................................ 79 CAPÍTULO 4 DETECCIÓN DE PÉRDIDA DE TORQUE EN UNIONES PERNADAS USANDO LA TÉCNICA DE LA IMPEDANCIA ELECTROMECÁNICA .................. 89 4.1 Introducción .......................................................................................... 89 4.2 Fundamentos teóricos........................................................................... 91 4.2.1 Técnica de impedancia electromecánica........................................ 91 4.2.2 Rango de frecuencia ...................................................................... 91 viii 4.3 Índices de identificación de perdida de par o aflojamiento .................... 91 4.4 Montaje experimental ............................................................................ 92 4.5 Resultados y discusión ......................................................................... 96 CAPÍTULO 5 CONCLUSIONES .......................................................................... 102 PUBLICACIONES ............................................................................................... 104 REFERENCIAS ................................................................................................... 105 ANEXOS ............................................................................................................. 115 spa
dc.format.extent 121 Páginas
dc.format.mimetype application/pdf
dc.identifier.instname Universidad Tecnológica de Pereira
dc.identifier.reponame Repositorio Institucional Universidad Tecnológica de Pereira
dc.identifier.repourl https://repositorio.utp.edu.co/home
dc.identifier.uri https://hdl.handle.net/11059/14610
dc.language.iso spa
dc.publisher Universidad Tecnológica de Pereira
dc.publisher.faculty Facultad de Ingenierías
dc.publisher.place Pereira
dc.publisher.program Maestría en Sistemas Automáticos de Producción
dc.relation.references Adams, D. E. (2007). Health Monitoring of Structural Materials and Components: Methods with Applications. In Health Monitoring of Structural Materials and Components: Methods with Applications. https://doi.org/10.1002/9780470511589
dc.relation.references Ai, D., Zhu, H., Luo, H., & Yang, J. (2014). An effective electromechanical impedance technique for steel structural health monitoring. Construction and Building Materials, 73, 97–104. https://doi.org/10.1016/J.CONBUILDMAT.2014.09.029
dc.relation.references Amerini, F., & Meo, M. (2011). Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods. Structural Health Monitoring, 10(6), 659–672. https://doi.org/10.1177/1475921710395810
dc.relation.references Analog Devices. (2014). Datasheet AD5933.
dc.relation.references Annamdas, V. G. M., & Soh, C. K. (2010). Application of Electromechanical Impedance Technique for Engineering Structures: Review and Future Issues. Journal of Intelligent Material Systems and Structures, 21(1), 41–59. https://doi.org/10.1177/1045389X09352816
dc.relation.references Annamdas, V. G. M., Yang, Y., & Soh, C. K. (2007). Influence of loading on the electromechanical admittance of piezoceramic transducers. Smart Materials and Structures, 16(5), 1888. https://doi.org/10.1088/0964-1726/16/5/045
dc.relation.references Argatov, I., & Sevostianov, I. (2010). Health monitoring of bolted joints via electrical conductivity measurements. International Journal of Engineering Science, 48(10), 874–887. https://doi.org/10.1016/J.IJENGSCI.2010.05.009
dc.relation.references Baptista, F. G., Filho, J. V., & Inman, D. J. (2011). Real-time multi-sensors measurement system with temperature effects compensation for impedance based structural health monitoring. Structural Health Monitoring, 11(2), 173– 186. https://doi.org/10.1177/1475921711414234
dc.relation.references Berger, V. W., & Zhou, Y. (2014). Kolmogorov–Smirnov Test: Overview. Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.STAT06558
dc.relation.references Berney, H., & O’riordan, J. J. (2008). Impedance measurement monitors blood coagulation. Analog Dialogue, 42(3), 42–48.
dc.relation.references Bhalla, S., & Soh, C. K. (2004a). Structural Health Monitoring by Piezo-Impedance Transducers. I: Modeling. Journal of Aerospace Engineering, 17(4), 154–165. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(154)
dc.relation.references Bhalla, S., & Soh, C. K. (2004b). Structural Health Monitoring by Piezo-Impedance Transducers. II: Applications. Journal of Aerospace Engineering, 17(4), 166– 175. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(166)
dc.relation.references Chen, W. Q., & Yan, W. (2010). Structural health monitoring using high-frequency electromechanical impedance signatures. Advances in Civil Engineering, 2010. https://doi.org/10.1155/2010/429148
dc.relation.references Chou, J. H., & Ghaboussi, J. (2001). Genetic algorithm in structural damage detection. Computers & Structures, 79(14), 1335–1353. https://doi.org/10.1016/S0045-7949(01)00027-X
dc.relation.references Chou, J. Y., & Chang, C. M. (2022). Low-story damage detection of buildings using deep neural network from frequency phase angle differences within a low frequency band. Journal of Building Engineering, 55, 104692. https://doi.org/10.1016/J.JOBE.2022.104692
dc.relation.references Christensen, R. (1997). Log-Linear Models and Logistic Regression. In Log-Linear Models and Logistic Regression (2nd ed.). Springer New York. https://doi.org/10.1007/B97647
dc.relation.references Cuc, A., & Giurgiutiu, V. (2004). Disbond detection in adhesively bonded structures using piezoelectric wafer active sensors. SPIE 5394, Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, 5394, 66–77. https://doi.org/10.1117/12.540358
dc.relation.references Dimitrova, D. S., Kaishev, V. K., & Tan, S. (2020). Computing the Kolmogorov Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed, or Continuous. Journal of Statistical Software, 95, 1–42. https://doi.org/10.18637/JSS.V095.I10
dc.relation.references Doebling, S. W. S., Farrar, C. R. C., Prime, M. B. M., & Shevitz, D. W. D. (1996). Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. In Los Alamos National Laboratory. https://doi.org/10.2172/249299
dc.relation.references Draper, N. R., & Smith, H. (2014). Applied Regression Analysis (3rd ed.). Wiley
dc.relation.references Ferreira, J., Seoane, F., Ansede, A., & Bragos, R. (2010). AD5933-based spectrometer for electrical bioimpedance applications. Journal of Physics: Conference Series, 224(1), 012011. https://doi.org/10.1088/1742- 6596/224/1/012011
dc.relation.references Fu, Z.-F., & He, J. H. (2001). Modal analysis (Z.-F. Fu & J. H. He (eds.); 1st ed.). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-7506-5079-3.X5000-1
dc.relation.references Giurgiutiu, V. (2014a). Structural health monitoring with piezoelectric wafer active sensors (V. Giurgiutiu (ed.); 2nd ed.)
dc.relation.references Giurgiutiu, V. (2014b). High-Frequency Vibration SHM with PWAS Modal Sensors – the Electromechanical Impedance Method. In V. Giurgiutiu (Ed.), Structural Health Monitoring with Piezoelectric Wafer Active Sensors (pp. 509–572). Academic Press. https://doi.org/10.1016/B978-0-12-418691-0.00011-3
dc.relation.references Giurgiutiu, V. (2014c). Introduction. In V. Giurgiutiu (Ed.), Structural Health Monitoring with Piezoelectric Wafer Active Sensors (2nd ed., pp. 1–19). Academic Press. https://doi.org/10.1016/B978-0-12-418691-0.00001-0
dc.relation.references Giurgiutiu, V., & Kropas-Hughes, C. V. (2003). Comparative study of neural-network damage detection from a statistical set of electro-mechanical impedance spectra. NDE for Health Monitoring and Diagnostics, 108–119. https://doi.org/10.1117/12.484050
dc.relation.references Giurgiutiu, V., Reynolds, A., & Rogers, C. A. (1999). Experimental Investigation of E/M Impedance Health Monitoring for Spot-Welded Structural Joints. Journal of Intelligent Material Systems and Structures, 10(10), 802–812. https://doi.org/10.1106/N0J5-6UJ2-WLGV-Q8MC
dc.relation.references Giurgiutiu, V., & Rogers, C. A. (1997, September). Electro-Mechanical (E/M) Impedance Method for Structural Health Monitoring and Non-Destructive Evaluation. International Workshop on Structural Health Monitoring, Stanford University, CA.
dc.relation.references Giurgiutiu, V., & Zagrai, A. (2005). Damage Detection in Thin Plates and Aerospace Structures with the Electro-Mechanical Impedance Method. Structural Health Monitoring, 4(2), 99–118. https://doi.org/10.1177/1475921705049752
dc.relation.references Giurgiutiu, V., Zagrai, A., & Bao, J. J. (2016). Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring. Structural Health Monitoring, 1(1), 41–61. https://doi.org/10.1177/147592170200100104
dc.relation.references Gresil, M., Yu, L., Giurgiutiu, V., & Sutton, M. (2012). Predictive modeling of 108 electromechanical impedance spectroscopy for composite materials. Structural Health Monitoring, 11(6), 671–683. https://doi.org/10.1177/1475921712451954
dc.relation.references Guarino, J., Hamilton, R., & Fischer, W. (2009). Acoustic detection of bolt detorquing in structures. Proceedings of Meetings on Acoustics, 6(1), 065002. https://doi.org/10.1121/1.3167485
dc.relation.references Hamdan, A., Sultan, M. T. H., & Mustapha, F. (2019). Structural health monitoring of biocomposites, fibre-reinforced composites, and hybrid composite. In Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp. 227–242). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102291-7.00011-3
dc.relation.references Hewlett Packard. (1996). HP LF 4192A: Impedance Analyzer Operation Manual... - Google Académico.
dc.relation.references Hu, X., Zhu, H., & Wang, D. (2014). A Study of Concrete Slab Damage Detection Based on the Electromechanical Impedance Method. Sensors, 14(10), 19897– 19909. https://doi.org/10.3390/S141019897
dc.relation.references Huang, Y. H., Liu, L., Yeung, T. W., & Hung, Y. Y. (2009). Real-time monitoring of clamping force of a bolted joint by use of automatic digital image correlation. Optics & Laser Technology, 41(4), 408–414. https://doi.org/10.1016/J.OPTLASTEC.2008.08.010
dc.relation.references Inman, D. J., Farrar, C. R., Lopes, V., & Steffen, V. (2005). Damage Prognosis: For Aerospace, Civil and Mechanical Systems. In D. J. Inman, C. R. Farrar, V. Lopes Junior, & V. Steffen Junior (Eds.), Damage Prognosis: For Aerospace, Civil and Mechanical Systems. John Wiley and Sons. https://doi.org/10.1002/0470869097
dc.relation.references Kessler, S. S., & Spearing, S. M. (2002). Design of a piezoelectric-based structural health monitoring system for damage detection in composite materials. In P. Davis (Ed.), Smart Structures and Materials 2002: Smart Structures and Integrated Systems (Vol. 4701, pp. 86–96). SPIE. https://doi.org/10.1117/12.474649
dc.relation.references Keysight Technologies. (2020). Impedance Measurement Handbook.
dc.relation.references Keysight Technologies. (2021). A data sheet of Agilent E4980A precision LCRmeter.
dc.relation.references Khadour, A., & Waeytens, J. (2018). Monitoring of concrete structures with optical fiber sensors. In Eco-efficient Repair and Rehabilitation of Concrete Infrastructures (pp. 97–121). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102181-1.00005-8
dc.relation.references Khomenko, A., Koricho, E. G., Haq, M., & Cloud, G. L. (2016). Bolt tension monitoring with reusable fiber Bragg-grating sensors. Journal of Strain Analysis for Engineering Design, 51(2), 101–108. https://doi.org/10.1177/0309324715598265
dc.relation.references Liang, C., Sun, F. P., & Rogers, C. A. (1994a). An Impedance Method for Dynamic Analysis of Active Material Systems. Journal of Vibration and Acoustics, 116(1), 120–128. https://doi.org/10.1115/1.2930387
dc.relation.references Liang, C., Sun, F. P., & Rogers, C. A. (1994b). Coupled Electro-Mechanical Analysis of Adaptive Material Systems — Determination of the Actuator Power Consumption and System Energy Transfer. Journal of Intelligent Material Systems and Structures, 5(1), 12–20. https://doi.org/10.1177/1045389X9400500102
dc.relation.references Liang, C., Sun, F., & Rogers, C. A. (1996). Electro-mechanical impedance modeling of active material systems. Smart Materials and Structures, 5(2), 171. https://doi.org/10.1088/0964-1726/5/2/006
dc.relation.references Liang, Y., Feng, Q., Li, D., & Cai, S. (2018). Loosening monitoring of a threaded pipe connection using the electro-mechanical impedance technique—experimental and numerical studies. Sensors (Switzerland), 18(11). https://doi.org/10.3390/s18113699
dc.relation.references Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, 62(318), 399–402. https://doi.org/10.1080/01621459.1967.10482916
dc.relation.references Lingyu, Y., & Giurgiutiu, V. (2008). Multi-mode Damage Detection Methods with Piezoelectric Wafer Active Sensors. Journal of Intelligent Material Systems and Structures, 20(11), 1329–1341. https://doi.org/10.1177/1045389X08096665
dc.relation.references Liu, S. C., Tomizuka, M., & Ulsoy, G. (2006). Strategic issues in sensors and smart structures. Structural Control and Health Monitoring, 13(6), 946–957. https://doi.org/10.1002/STC.88
dc.relation.references Madgav, A. V. G., & Soh, C. K. (2007). Uniplexing and Multiplexing of PZT Transducers for Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 19(4), 457–467. https://doi.org/10.1177/1045389X06075523
dc.relation.references Malinowski, P., Wandowski, T., & Ostachowicz, W. (2015). The use of electromechanical impedance conductance signatures for detection of weak adhesive bonds of carbon fibre–reinforced polymer. Structural Health Monitoring, 14(4), 332–344. https://doi.org/10.1177/1475921715586625
dc.relation.references Martowicz, A., & Rosiek, M. (2013). Electromechanical Impedance Method. In Advanced Structural Damage Detection: From Theory to Engineering Applications (pp. 141–176). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118536148.CH6
dc.relation.references Miller Jr, R. G. (1997). Beyond ANOVA: Basics of Applied Statistics. CRC Press.
dc.relation.references Moharana, S., & Bhalla, S. (2015). Influence of adhesive bond layer on power and energy transduction efficiency of piezo-impedance transducer. Journal of Intelligent Material Systems and Structures, 26(3), 247–259. https://doi.org/10.1177/1045389X14523858
dc.relation.references Na, W. S. (2022). A portable bolt-loosening detection system with piezoelectric based nondestructive method and artificial neural networks. Structural Health Monitoring, 21(2), 683–694. https://doi.org/10.1177/14759217211008619
dc.relation.references Naidu, A. S. K. (2004). Structural damage identification with admittance signatures of smart PZT transducers. Nanyang Technological University.
dc.relation.references Ng, C. T., & Veidt, M. (2009). A Lamb-wave-based technique for damage detection in composite laminates. Smart Materials and Structures, 18(7), 074006. https://doi.org/10.1088/0964-1726/18/7/074006
dc.relation.references Olivier Cherrier , Valérie Budinger , Frédéric Lachaud, J. M. P. S. (2013). Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks. Engineering Structures, 794–804
dc.relation.references Overly, T. G., Park, G., Farinholt, K. M., & Farrar, C. R. (2009). Piezoelectric active sensor diagnostics and validation using instantaneous baseline data. IEEE Sensors Journal, 9(11), 1414–1421. https://doi.org/10.1109/JSEN.2009.2018351
dc.relation.references Pandey, A. K., Biswas, M., & Samman, M. M. (1991). Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 145(2), 321–332. https://doi.org/10.1016/0022-460X(91)90595-B
dc.relation.references Panigrahi, R., Bhalla, S., & Gupta, A. (2010). A low-cost variant of electro mechanical impedance (EMI) technique for structural health monitoring. Experimental Techniques, 34(2), 25–29. https://doi.org/10.1111/J.1747- 1567.2009.00524.X
dc.relation.references Park, G., Cudney, H. H., & Inman, D. J. (2000). Impedance-Based Health Monitoring of Civil Structural Components. Journal of Infrastructure Systems, 6(4), 153– 160. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153)
dc.relation.references Park, G., & Inman, D. J. (2005). Impedance-Based Structural Health Monitoring. In Damage Prognosis: For Aerospace, Civil and Mechanical Systems (pp. 275– 292). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470869097.CH13
dc.relation.references Park, G., Sohn, H., Farrar, C. R., & Inman, D. J. (n.d.). Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward.
dc.relation.references Park, G., Sohn, H., Farrar, C. R., & Inman, D. J. (2003). Overview of piezoelectric impedance-based health monitoring and path forward. Shock and Vibration Digest, 35(6), 451–463. https://doi.org/10.1177/05831024030356001
dc.relation.references Park, S., Yun, C.-B., Roh, Y., & Lee, J.-J. (2005). Health monitoring of steel structures using impedance of thickness modes at PZT patches. Smart Structures and Systems, 1(4), 339–353. https://doi.org/10.12989/SSS.2005.1.4.339
dc.relation.references Pavelko, V., Ozolinsh, I., Kuznetsov, S., & Pavelko, I. (2011). Structural health monitoring of aircraft structure by method of electromechanical impedance. Proc. of the VI International Workshop of NDT Experts , 223–239.
dc.relation.references Pavelko, V. P., Kuznetsov, S., Ozolinsh, I., & Pavelko, I. (2014, October). Some applications of electromechanical impedance technology for SHM. Proceedings of 11th European Conference on Non-Destructive Testing.
dc.relation.references Peairs, D. M., Grisso, B. L., Margasahayam, R. N., Page, K. R., & Inman, D. J. (2004). Impedance-based health monitoring of space shuttle ground structures. Proc. SPIE 5394, Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, 5394, 99–107. https://doi.org/10.1117/12.539771
dc.relation.references Peairs, D. M., Park, G., & Inman, D. J. (2004). Improving Accessibility of the Impedance-Based Structural Health Monitoring Method. Journal of Intelligent Material Systems and Structures, 15(2), 139. https://doi.org/10.1177/1045389X04039914
dc.relation.references Pereira, D. A., & Serpa, A. L. (2015). Bank of H∞ filters for sensor fault isolation in active controlled flexible structures. Mechanical Systems and Signal Processing, 60–61, 678–694. https://doi.org/10.1016/J.YMSSP.2015.01.036
dc.relation.references Purekar, A. S., & Pines, D. J. (2010). Damage Detection in Thin Composite Laminates Using Piezoelectric Phased Sensor Arrays and Guided Lamb Wave Interrogation. Journal of Intelligent Material Systems and Structures, 21(10), 995–1010. https://doi.org/10.1177/1045389X10372003
dc.relation.references Ren, H., Chen, X., & Chen, Y. (2017). Structural Health Monitoring and Influence on Current Maintenance. In Reliability Based Aircraft Maintenance Optimization 112 and Applications (pp. 173–184). Academic Press. https://doi.org/10.1016/B978- 0-12-812668-4.00009-5
dc.relation.references Ribeiro, M. I. (2004). Gaussian Probability Density Functions: Properties and Error Characterization. In ipac.caltech.edu.
dc.relation.references Rosiek, M., Martowicz, A., Uhl, T., Stępiński, T., & Łukomski, T. (2010). Electromechanical impedance method for damage detection in mechanical structures. 11th IMEKO TC 10 Workshop on Smart Diagnostics of Structures, 18–20.
dc.relation.references Ross, S. M. (2021). Analysis of variance. In Introduction to Probability and Statistics for Engineers and Scientists (pp. 453–498). Academic Press. https://doi.org/10.1016/B978-0-12-824346-6.00019-3
dc.relation.references Samantaray, S. K., Mittal, S. K., Mahapatra, P., & Kumar, S. (2018). An impedance based structural health monitoring approach for looseness identification in bolted joint structure. Journal of Civil Structural Health Monitoring, 8(5), 809– 822. https://doi.org/10.1007/S13349-018-0307-2
dc.relation.references Sirohi, J., & Chopra, I. (2000). Fundamental Understanding of Piezoelectric Strain Sensors. Journal of Intelligent Material Systems and Structures, 11(4), 246– 257. https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
dc.relation.references Sparkfun electronics. (2014). Datasheet of Piezoelectric Sound Components. https://doi.org/10.1.28
dc.relation.references Staszewski, W. J., Mahzan, S., & Traynor, R. (2009). Health monitoring of aerospace composite structures – Active and passive approach. Composites Science and Technology, 69(11–12), 1678–1685. https://doi.org/10.1016/J.COMPSCITECH.2008.09.034
dc.relation.references Sun, F. P., Chaudhry, Z. A., Rogers, C. A., Majmundar, M., & Liang, C. (1995). Automated real-time structure health monitoring via signature pattern recognition. Conference on Smart Materials and Structures, 2443, 236–247. https://doi.org/10.1117/12.208261
dc.relation.references Tawie, R., & Lee, H. K. (2010). Monitoring the strength development in concrete by EMI sensing technique. Construction and Building Materials, 24(9), 1746–1753. https://doi.org/10.1016/J.CONBUILDMAT.2010.02.014
dc.relation.references Tinoco, H. A., & Marulanda, D. (2014). A new index for damage identification in active beams with electromechanical impedance technique (EMI) approach to SHM. Proceedings of II International Conference on Advanced Mechatronics, Design, and Manufacturing Technology, 1–6.
dc.relation.references Tinoco, H. A., Serpa, A. L., & Ramos, A. M. (2010). Numerical Study of the Effects of Bonding Layer Properties on Electrical Signatures of Piezoelectric Sensors. Mecánica Computacional, 29(86), 8391–8409.
dc.relation.references Tseng, K. K. H., & Naidu, A. S. K. (2002). Non-parametric damage detection and characterization using smart piezoceramic material. Smart Materials and Structures, 11(3), 317. https://doi.org/10.1088/0964-1726/11/3/301
dc.relation.references Tseng, K. K., & Wang, L. (2004). Smart piezoelectric transducers for in situ health monitoring of concrete. Smart Materials and Structures, 13(5), 1017. https://doi.org/10.1088/0964-1726/13/5/006
dc.relation.references Uhl, T., Stepinski, T., & Staszewski, W. (2013). Introduction. In Advanced Structural Damage Detection: From Theory to Engineering Applications (pp. 1–15). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118536148.CH1
dc.relation.references Wang, D., Zhang, J., & Zhu, H. (2015). Embedded electromechanical impedance and strain sensors for health monitoring of a concrete bridge. Shock and Vibration, 2015. https://doi.org/10.1155/2015/821395
dc.relation.references Watkins, A. J., & Kitcher, C. (2006). Electrical Installation Calculations. In Electrical Installation Calculations Volume 2 (6th ed.). Routledge. https://doi.org/10.4324/9780080460611
dc.relation.references Wayne Kerr Electronics. (n.d.). Precision Impedance Analyzers Technical data sheet.
dc.relation.references Wetherhold, R., Messer, M., & Patra, A. (2003). Optimization of Directionally Attached Piezoelectric Actuators. Journal of Engineering Materials and Technology, 125(2), 148–152. https://doi.org/10.1115/1.1555653
dc.relation.references Xu, Y. G., & Liu, G. R. (2002). A Modified Electro-Mechanical Impedance Model of Piezoelectric Actuator-Sensors for Debonding Detection of Composite Patches. Journal of Intelligent Material Systems and Structures, 13(6), 389–396. https://doi.org/10.1177/104538902761696733
dc.relation.references Yang, Y., Hu, Y., & Lu, Y. (2008). Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures. Sensors, 8(1), 327–346. https://doi.org/10.3390/S8010327
dc.relation.references Yu, L., Pollock, P., Gresil, M., & Sutton, M. (2011). Progressive Damage Detection/Diagnosis on Composite Using Electromechanical Impedance Spectroscopy. ASME 2011 International Mechanical Engineering Congress and Exposition, 1, 255–262. https://doi.org/10.1115/IMECE2011-63914
dc.relation.references Zagrai, A. N., & Giurgiutiu, V. (2001). Electro-Mechanical Impedance Method for Crack Detection in Thin Plates. Journal of Intelligent Material Systems and Structures, 12(10), 709–718. https://doi.org/10.1177/104538901320560355
dc.relation.references Zimmerman, D. C., & Kaouk, M. (1994). Structural Damage Detection Using a Minimum Rank Update Theory. Journal of Vibration and Acoustics, 116(2), 222– 231. https://doi.org/10.1115/1.2930416
dc.rights Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de spa
dc.rights.accessrights info:eu-repo/semantics/openAccess
dc.rights.coar http://purl.org/coar/access_right/c_abf2
dc.rights.license Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc 620 - Ingeniería y operaciones afines
dc.subject.ddc 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.subject.lemb Ingeniería de estructuras
dc.subject.lemb Análisis espectral - Procesamiento de datos
dc.subject.lemb Procesamiento electrónico de datos - Técnicas estructuradas
dc.subject.proposal Transductores piezoeléctricos spa
dc.subject.proposal Impedancia electromecánica spa
dc.subject.proposal Distribuciones gaussianas spa
dc.title Identificación y localización de daños en estructuras activas con la técnica de la impedancia electromecánica (EMI) enfocada al monitoreo de la integridad estructural (SHM) spa
dc.type Trabajo de grado - Maestría
dc.type.coar http://purl.org/coar/resource_type/c_bdcc
dc.type.coarversion http://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.content Text
dc.type.driver info:eu-repo/semantics/masterThesis
dc.type.version info:eu-repo/semantics/acceptedVersion
Archivos
Paquete original
Mostrando 1 - 1 de 1
Imagen en miniatura
Nombre:
TRABAJO DE GRADO.pdf
Tamaño:
2.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Paquete de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: