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Abstract 

In this paper, a branch and bound procedure for the Simple Assembly Line Balancing Problem Type 2 (SALBP-2) 
is described. This NP-hard problem consists of assigning tasks to a given number of work stations of a paced assembly 
line so that the production rate is maximized. Besides, possible precedence constraints between the tasks have to be 
considered. Existing solution procedures for SALBP-2 are mainly based on repeatedly solving instances of the closely 
related SALBP-1, which is to minimize the number of stations for a given production rate. The proposed branch and 
bound procedure directly solves SALBP-2 by using a new enumeration technique, the Local Lower Bound Method, 
which is complemented by a number of bounding and dominance rules. Computational results indicate that the new 
procedure is very efficient. 
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1. Introduction 

 

We consider the Type 2 of the Simple Assembly 

Line Balancing Problem (SALBP-2) which arises in the 

mass production of a single product. The assembly of 

each product unit requires the execution of n tasks 

(indivisible elements of work) with fixed operation 

times t¡ ( j  = 1,..., n). Precedence constraints partially 

specify the order in which the tasks have to be 

performed. They can be represented by an acyclic 

precedence graph which contains nodes for all tasks 

with operation times as node weights and arcs ( i ,  j )  if 

task i  has to be completed before task ; can be started. A 

paced assembly line consists of m (work) stations, 

connected by a conveyor belt onto which product units 

are launched at a constant rate p. Due to the uniform 

movement of the belt, the production rate is equal to p. 

The constant time interval l / p  between the arrival of 

two consecutive units in all stations is called cycle time 

c. Each station k = l , . . . , m  has repeatedly to perform a 

subset Sk of the tasks on consecutive units. Such a set Sk 

is called station load of station k ,  and the sum of 

operation times of the contained tasks is referred to as 

station time t ( S k ) .  Since all tasks have to be performed 

completely, the cycle time must not be smaller than the 

maximum of all station times. 

Using these assumptions, SALBP-2 is to find a 

partition of the set of all tasks into disjoint sta- 
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tion loads S k  with k = \ ,2 , . . . ,m.  For each arc (i, of the 

precedence graph the relation h < k  must hold if i  e S h  

and j  eSt, The objective is to maximize the production 

rate, or equivalently, to minimize the cycle time which 

is determined by the maximal station time. 

Remark: For ease of presentation we assume that tasks 

are numbered according to a topological ordering, i.e. i  

< j  for all arcs (/, /). As objective we consider the 

minimization of the cycle time. 

SALBP-2 is usually present when changes in the 

production process of a product take place. For 

example, operation times may be reduced by using 

alternative processing techniques. In this case, the 

number of stations of the line may remain fixed. 

We consider an example with 10 tasks and the 

precedence graph of Fig. 1 (node weights indicate 

operation times). An optimal solution with m = 5 

stations is the partition 5X = {3, 4}, S 2  = {1, 5}, S3 = {2, 

7}, 54 = {6, 8}, S 5  = {9, 10} with the cycle time c = 13, 

which is determined by t (S s ) .  

The sequel of the paper is organized as follows. In 

Section 2, we describe bound arguments for SALBP-2 

which may be exploited by solution procedures. Section 

3 surveys existing solution approaches. Most of these 

procedures rely on the close relationship of SALBP-2 to 

SALBP-1 which consists of minimizing the number of 

work stations for a given cycle time. Section 4 

introduces SALOME-2, a new branch and bound 

algorithm, which is extended to a flexible bidirectional 

approach in Section 5. The results of computational 

experiments comparing existing as well as new 

procedures are summarized in Section 6. Finally, 

Section 7 contains conclusions which can be drawn 

from this research. 

 

 

2. Bounds for SALBP-2 

 

Solving SALBP-2 includes two main tasks which 

have to be accomplished simultaneously. First, a 

minimal cycle time has to be determined. Second, an 

assignment of all tasks to the m work stations with 

loads observing the precedence constraints and station 

times not exceeding the minimal cycle time has to be 

found. Such an assignment is called feasible for the 

respective cycle 

 
Table 1 

Definition of terms 
 

number of tasks 

operation time (task time) of task / — 1,..., n U j  is assumed to be positive and integral) 

maximum task time; fmin: minimum task time sum of task times 

set of tasks which immediately precede (follow, succeed) task   in the precedence graph set 

of all tasks which precede (follow, succeed) task j  in the precedence graph number of 

stations 

station load, set of tasks assigned to station k = 1 , 2 , . . .  

station time of station k (= £;- e s tj) 

(realized) cycle time ( = max{t(Sk) I k = 1,..., m)) 

lower (upper) bound on cycle time 

idle time in station k ( = c - t(Sk)) 

total available idle time for a realized cycle time c ( - m c  —  fsum) 

lower bound on the station time to realize cycle time c (= max{0, c — Totl(c)}) 

smallest integer >x ;  [ x  J: largest integer 

== \(tj + T.hf=P-th)/c\. earliest station of task j for cycle time c 

•= m + 1 - \Uj +    e f th)/c\. latest station of task   for cycle time c 

= \Ej(c), Ly(c)]: station interval of task ; for cycle time c 

 

Fig. 1. Precedence graph. 
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time. Hence, the problem can be solved by itera-tively 

checking for several trial cycle times whether or not a 

feasible assignment of all tasks to m stations exists (cf. 

Section 3.1 for such solution procedures). This approach 

requires computing lower and upper bounds on the cycle 

time. Furthermore, it is possible to reduce the number of 

station loads which have to be considered for a certain 

trial cycle time by exploiting the problem structure of 

SALBP-2. The used terms are defined in Table 1. 

Lower bounds for SALBP-2 can be obtained by 

utilizing relationships to other combinatorial 

optimization problems. By omitting the precedence 

constraints SALBP-2 passes into the problem of 

scheduling jobs ( = tasks) on identical parallel machines 

( = stations) with the objective of minimizing the 

makespan ( = cycle time). A simple lower bound LB1 

for this problem (and for SALBP-2 as well) is obtained 

by allowing job preemption, i.e., processing of a job 

may be interrupted and continued on another machine. 

Since jobs cannot be processed on two machines simul-

taneously, the bound is given by 

LB1 « max{fmax, \ t w a m /m] }.  

For our example, 

LB1 = max{9, [50/51) = 
10

- 

Another lower bound for the parallel machine 

problem related to SALBP-2 is obtained as follows. For 

ease of presentation, we assume that the tasks are 

numbered according to decreasing operation times, i.e., 

t j>t ) + l   for ; =  l , . . . , n  - 1. 

Consider the m + 1 largest tasks 1,..., m + 1. A lower 

bound on the cycle time for this reduced problem is tm  +  

tm  +  x ,  the sum of the two smallest task times, because at 

least one station contains two tasks. In general, a lower 

bound LB2 is obtained by 

n - 1 

LB2.= max^ £ f*.m+1_( I * = 1,. 

, 1= 0  

For our example, we get LB2 = 5 + 5 = 10 because the 

six largest tasks are 9, 1, 2, 3, 4, and 6 with operation 

times 9, 6, 6, 5, 5, and 5. 

A main characteristic of SALBP-2 is the existence of 

precedence constraints. Though they complicate the 

problem, they provide information for additional 

problem reduction. They restrict the possible 

assignment of each task to a station interval which is 

bounded by an earliest and a latest station, respectively 

(cf. Talbot and Patterson, 1984). Depending on a trial 

cycle time c, values for the earliest and latest stations 

can be derived by 

(',■ + E O/c 
\       hep,' I 

(earliest station for task / = !,...,«), and 

 

Lj(c)  ■■= m + 1 

 

(latest station for task j  = 1,..., n).  

Formula (la) takes into consideration that task ; must 

not start before all preceding tasks have been finished. A 

lower bound on the number of stations required for task 

; and the tasks of the predecessor set P* is obtained by 

dividing the corresponding sum of task times by the trial 

cycle time c. Equivalently to (la), formula (lb) considers 

the task times of task ; and all its successors. 

 

 

Table 2 

Earliest and latest stations for m = 5 and c = 11 

; 

m 

(la) 

(lb) A 

1 2 3 4 5 6 7 8 9 10 

f .  g 6 5 £ 4 5 4 2 9  4 ~  

Ey(ll) 1 2 1 1 2 3 2 4 5 5 

¿,(11) 2 3 2 3 3 4 4 4 4 5  
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If the trial cycle time c is to be realized, each task j = 1,..., 

n must be assigned to a station in its station interval 

S l j ( c )  =  [ E j ( c ) , L j ( c ) \ .  

Tasks whose station intervals enclose a certain station k 

are potentially assignable to k .  

If we assume c = 11 to be the trial cycle time, we get 

the values of Table 2 for our example of Section 1. Since 

the station interval SI9(11) is empty for task 9, i.e., it 

cannot be assigned to any station, no feasible solution can 

exist for the trial cycle time 11. Note that due to £,(c) 

<£y(c - 1) and L j ( c )  > Ly(c - 1) smaller cycle times 

cannot be feasible, too. Hence, the lower bound can be 

increased to 12 for the example. 

In general, a lower bound LB3 for SALBP-2 can be 

defined as 

LB3 

— min{c I E j ( c )  < L,(c) for all j  = 1,...,n } .  

For the trial cycle time c = 12, the values of Table 3 

result. 

A simple upper bound on the cycle time is 

UB := max{fmax, 2 - [ t s u m / m \ )  

(cf. Coffman et al., 1978, as well as Hackman et al., 

1989). If LB1 > fmax, UB can be improved to LB1 + fmax - 

1 due to the following reflections (cf. Scholl, 1995). It is 

always possible to determine a preemptive solution with 

cycle time LB1 in which each task is either processed by 

one station completely or is split up between two 

consecutive stations k and k + 1 (cf. Mc-Naughton, 

1959). This theoretical upper bound implies the idea for a 

simple heuristic. Station 1 * is filled up by successively 

assigning tasks in the order of the topological task 

numbering until the station time is equal to or just 

exceeds the cycle time LB1. The same procedure is 

repeated for the stations 2, 3,..., m. For our example, the 

heuristic determines a solution with a realized cycle 

time of 13. 

In the following, we outline some possibilities to 

utilize the bound arguments for reducing the number of 

station loads, which have to be examined in order to 

find a feasible assignment for a certain trial cycle time. 

Since only trial cycle times c > LB1 are considered, 

the total time m ■ c available for processing a product 

unit equals or exceeds the sum of operation times tsum. 

Hence, a total idle time 

Totl(c) :=m- c -fsum 

cannot be used for work, i.e., one or more stations are 

not completely utilized. In such stations k ,  an idle time 

I k ( c ) ~ C - t ( S k )  

occurs. Each of these idle times I k ( c )  for all k — 1,..., 

m is bounded by Totl(c). Therefore, a lower bound on 

the station times of all stations is 

SL(c) := max{0, c - Totl(c)}. 

Station intervals with only one element can be used 

to reduce SALBP-2 instances by prefixing because each 

task with £y(c) = L,(c) must be assigned (prefixed) to 

station £;(c) in order to find a feasible solution with 

cycle time c. In our example, the tasks 8, 9, and 10 are 

prefixed to the stations 4 and 5, respectively, for the 

trial cycle time c = 12 (cf. Table 3). 

Furthermore, only maximal station loads have to be 

considered. A station load is maximal with respect to a 

cycle time c if no not yet assigned task can be added to 

the respective station neither exceeding the cycle time 

nor violating the 

 

 

Table 3 

Earliest and latest stations for m = 5 and c = 12 

j ________________________________________________________________________  
1 2 3 4 5 6 7 8 9  10 

E/12) I I 1 1 2 3 2 4 4 5~ 

L/12) 2 3 3 3 4 4 4 4 4 5  
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precedence constraints. In the example, the station 

loads S4 = {8, 9} and S5 = {10} obtained by prefixing 

are maximal with respect to c = 12, because none of the 

tasks 5, 6, and 7, which are potentially assignable to 

station 4, can be added to the load S4. Task 10 is the 

only potentially assignable one for station 5. Hence, 

idle times /4(12) = 1 and 75(12) = 8 occur in stations 4 

and 5. 

 

3. Existing exact solution approaches 

In this section, we provide a short summary of 

solution procedures for SALBP-2 presented in the 

literature so far. 

3.1. Approaches using SALBP-1 procedures 

Most approaches are based on the close relationship 

of SALBP-2 to SALBP-1 (minimize m for a given c). 

Both problem types can be reduced to a common 

feasibility problem, named SALBP-F. This problem is 

to find a feasible task assignment to m stations for a 

given cycle time c or to ascertain that none exists. 

Therefore, SALBP-2 can be solved by successively 

considering instances of SALBP-F with m stations and 

various trial cycle times of an interval [LB, UB] (cf. 

Section 2). Solutions for SALBP-F are obtained by 

using modified procedures for SALBP-1. 

Procedures for SALBP-1 

Since most research in simple assembly line 

balancing focussed on SALBP-1, a large number of 

exact solution procedures have been proposed (cf. 

Baybars, 1986, Domschke et al., 1993, as well as Scholl, 

1995, for surveys and comparisons). For heuristic 

procedures see Talbot et al. (1986) as well as Scholl and 

VoB (1994). 

Most procedures exactly solving SALBP-1 are based 

on the branch and bound principle as well as on dynamic 

programming. In the last years, only branch and bound 

procedures, clearly outperforming the existing dynamic 

programming approaches, have been developed. 

Among these, the algorithms FABLE of Johnson 

(1988), EUREKA of Hoffmann (1992) and SALOME-1 

of 

Scholl and Klein (1994) seem to be most effective. 

Further branch and bound procedures stem from Talbot 

and Patterson (1984), Saltzman and Baybars (1987) as 

well as Hackman et al. (1989). Some of the dynamic 

programming procedures are those of Jackson (1956), 

Held et al. (1963), and Schräge and Baker (1978). 

FABLE enumerates solutions by successively 

assigning tasks to the stations 1, 2,... according to a 

priority list. The enumeration is organized as a 

depth-first-search. Each station is maximally loaded 

before a new one is opened. Various dominance and 

bounding criteria are used for reducing the size of the 

enumeration tree. 

EUREKA starts with a simple lower bound SB = f 

fsum/cl on the number of stations and iter-atively solves 

instances of SALBP-F. If a solution with SB stations is 

found, the algorithm stops with the optimal solution of 

SALBP-1. Otherwise, SB is increased by one and the 

procedure is started once more, i.e., a new enumeration 

tree is built. Enumeration is done by systematically gen-

erating station loads (instead of assigning single tasks) 

in form of a depth-first-search. In a first phase of the 

algorithm, stations are considered in order of increasing 

numbers (forward direction), a second phase builds 

station loads in backward direction by reversing the 

precedence graph. Each phase is executed for a 

prespecified time interval with phase 2 starting after 

phase 1 and using the actual lower bound SB. If both 

phases fail to find an optimal solution, the heuristic of 

Hoffmann (1963) is applied which may result in a 

suboptimal solution. 

SALOME-1 integrates and improves the most 

promising components of FABLE and EUREKA. 

Furthermore, some additional bounding and dominance 

rules as well as a new bidirectional branching strategy 

are included. This approach, which clearly outperforms 

FABLE and EUREKA, is adapted to solving SALBP-2 

in Sections 4 and 5 of this paper. 

Each of the algorithms described above can easily be 

modified in order to solve SALBP-F with m and c fixed. 

This is done by starting the procedures with the lower 

bound m and fathoming nodes whenever the lower 

bound has to be increased. 
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Search methods for SALBP-2 

With respect to the sequence in which trial cycle 

times of the interval [LB, UB] are considered the 

following general search procedures are distinguished 

(cf., e.g., Mansoor, 1964, Wee and Magazine, 1981, as 

well as Hackman et al., 1989). 

• Lower Bound Method: Starting with a lower 

bound LB, the cycle time is successively increased by 

one until the respective SALBP-F instance is feasible. 

• Upper Bound Method: First, an upper bound UB 

on the cycle time is determined by a heuristic 

procedure, or a theoretical value is computed (cf. 

Section 2.1). Starting with UB, the cycle time c is 

successively decreased by one until SALBP-F is 

infeasible for c - 1 or c is equal to a lower bound. In 

each iteration, the maximal station time of the found 

feasible solution is used as new value of c. 

• Binary Search: The search interval [LB, UB] is 

successively subdivided into two sub-intervals by 

choosing the mean element 

c =  [(LB + UB)/2J. 

If SALBP-F is feasible for c, the upper bound UB is set 

to the maximum station time in the corresponding 

solution. Otherwise, LB is set to c +1. The search stops 

with an optimum cycle time UB when UB = LB. 

• Fibonacci Binary Search: The method contains 

two steps. First, a Fibonacci Search is performed 

following the basic idea of the Lower Bound Method, 

i.e., the trial cycle times are LB, LB + F(l), LB + F(l) + 

F(2),... using the Fibonacci numbers F(l) ■= 1, F(2) ~ 2, 

and 

F ( i )  ==F(J- 1) + F( / -2)  for i > 3 .  

If a SALBP-F instance with a trial cycle time c is not 

feasible, LB is set to c + 1. When a feasible cycle time c 

is obtained, the Binary Search is applied to the 

remaining interval [LB, c] ,  

• Binary Search with Prespecified Entry Point: The 

method differs from standard Binary Search only in 

determining the first trial cycle time. Based on the 

observation that for many problem instances the cycle 

times close to LB are more likely to be optimal than 

larger values, the first trial cycle time is determined by 

the maximal value 

of c for which m = ff s u m /c l  holds. The Binary Search 

is applied to the remaining search interval. In our 

example, the first trial cycle time is c = 12. 

 

3.2. Direct procedures for SALBP-2 

 

In contrary to SALBP-1, only few exact methods 

directly solving SALBP-2 are available. 

Charlton and Death (1969) describe a general 

branch and bound procedure which is also able to solve 

flow and job shop problems with minor changes and 

does not sufficiently utilize the particular structure of 

assembly line balancing problems. 

A specialized branch and bound procedure for 

SALBP-2 has been developed by Scholl (1994). I t  

contains a heuristic procedure with a tabu search 

strategy for determining good initial upper bounds. 

Branching is performed as a depth-first-search by 

assigning a single task to a station in each step. The 

choice of the task-station-combinations is controlled by 

priority rules. In contrast to most other procedures for 

assembly line balancing problems, stations are not 

considered in a fixed order. The algorithm contains 

different ways of computing lower bounds exploiting 

the structural properties of SALBP-2 described in 

Section 2. The most effective bounding method is 

based on minimal idle times in every station which can 

be determined by solving particular knapsack 

problems. Furthermore, the algorithm makes intensive 

use of dominance and reduction rules. 

 

 

4. SALOME for SALBP-2 

 

We present a new branch and bound approach 

which directly solves SALBP-2. It is called 

SA-LOME-2 (Simple Assembly Line Balancing Opti-

mization Method for Type 2). 

 

4.1. Analysis of search methods 

 

In order to examine the performance of the search 

methods presented in Section 3.1, the Lower Bound 

Method is applied to our example (cf. Fig. 2). The 

SALBP-F instances are solved by 
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an enumeration procedure similar to that of EUREKA 

which systematically builds maximal loads. We start 

with the trivial lower bound LB1 = 10. Since Totl(lO) = 

0, only station loads without idle time are feasible for 

SALBP-F with c = 10. Hence, only one station load is 

possible in the first three stations, respectively. The 

hatched node is fathomed because no load without idle 

time is available for station 4. For c = 11 the total idle 

time is 5 and the station times must be in the interval 

[6,11]. In the first branch of the respective tree, no idle 

time occurs until the station load S3 = {5, 6} with idle 

time 73(11) = 2 is built. Hence, the remaining total idle 

time for the reduced problem with stations 4 and 5 is 

reduced to 3. Now, only loads with station times not 

smaller than 8 avoid exceeding the total idle time. Since 

only the maximal load 54 = {6, 8} with station time 7 

exists for station 4, the respective hatched node is 

fathomed. The other hatched nodes are fathomed 

accordingly. After examining an enlarged tree for c = 12 

without success, a feasible (= optimal) solution is found 

in the first branch of the tree for c = 13. 

The example reveals some disadvantages of 

SALBP-1 based search methods: 

• They do not use results of computations 

performed for previously considered trial cycle times 

(SALBP-F instances). Hence, large portions of 

enumeration trees may repeatedly be constructed. In 

our example, four trees containing common parts 

(boldfaced in Fig. 2) have to be built by the Lower 

Bound Method. 

• Furthermore, these methods rely on the as-

sumption that all values of the search interval are 

potential cycle times. This may lead to unnecessary 

iterations if no combination of tasks with a station time 

equal to a trial cycle time exists. For example, imagine 

the trivial case of a problem with operation times which 

are multiples of 100. Then, only multiples of 100 are 

candidates for the optimum cycle time. 

• The practical application of solution procedures is 

often restricted by limited computation time. In this 

case, search methods, which examine infeasible 

SALBP-F instances first, may not provide a feasible 

solution at all. 

4.2. Outline of the algorithm 

In order to avoid the disadvantages stated above, a 

procedure directly solving SALBP-2 is developed. It 

contains a new enumeration tech- 

 

 

 

 

 

 

for the example problem. 

c=10: 

Fig. 2. Lower bound 

UB=1
3 
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the Local Lower Bound Method, 

which exploits the observation that the relative differ-

ence between the minimal cycle time and an initial 

lower bound is very small for a large number of 

problem instances. 

Branching is performed as a depth-first-search by 

successively building loads for the stations 1,..., m. 

Resulting subproblems (nodes of the enumeration tree) 

are reduced problems of the same type with less stations 

and a reduced precedence graph. The method starts 

with a lower bound LB on the cycle time and proceeds 

like a Lower Bound Method as long as possible in order 

to find a feasible solution with cycle time LB. Hence, in 

each node (which represents a partial solution of 

already built station loads) only such maximal station 

loads, whose idle times do not exceed the remaining 

total idle time (with respect to LB), are branched. After 

examining all loads feasible for the trial cycle time LB 

without success (no feasible completion of the partial soluof 

Operational Research 91 (1996) 367-385 

 

tion with cycle time LB exists), the lower bound of the 

node is locally increased. Note that the Lower Bound 

Method fathoms this node. In order to avoid trying 

cycle times impossible for the reduced problem, the 

new value LB' of the local lower bound is determined 

as the smallest one for which at least one not yet 

considered station load is feasible. For LB' only those 

maximal loads which have not been feasible for former 

bound values are examined. Whenever loads for all 

stations but station m have been constructed, a feasible 

solution is obtained by assigning the remaining tasks to 

station m. The cycle time of the best known feasible 

solution serves as upper bound UB. A node is fathomed 

when its local lower bound exceeds the value of UB. 

The outlined enumeration procedure is illustrated by 

means of our example. Fig. 3 shows the resulting 

enumeration tree, the nodes are numbered in order of 

their generation. The current local lower bounds are 

given as node weights 
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with the respective remaining 

total idle times. Loops mark the increase of a bound. Parts 

of the tree which correspond to the same value of the 

local lower bound are underlayed with the same pattern. 

In our explanation below, we denote the local lower 

bound of a node at level k of the tree, which represents a 

partial solution with stations l , . . . , k ,  by LB^. 

The procedure starts with the lower bound LB0 = 10 as 

well as the total idle time Totl(lO) = 0 and builds the same 

station loads as the Lower Bound Method for SALBP-F 

with c = 10 (cf. Fig. 2). In node 3, the only maximal load 54 

= {6, 8} for station 4 has an idle time 74(10) = 3. Hence, the 

partial solution S l  =  {3, 4}, S 2  = {1, 5}, S3 = {2, 7} cannot 

be completed to a feasible solution with cycle time 10. In 

contrast to solving a SALBP-F instance, the Local Lower 

Bound Method does not fathom the node but increases its 

local lower bound LB3 to 13. The cycle times 11 and 12 

are not possible in this node. For the cycle time 11 the 

first three station loads of the partial solution show idle 

times /jOD = /2(11) = 73(11) — 1. Since the only 

maximal load S4 = {6, 8} of station 4 would result in the 

idle time /4(11) = 4, the cumulated idle time of 7 would 

exceed the total idle time TotI(ll) = 5. Due to idle times 

/j(12) = /2(12) - 73(12) = 2 and 74(12) = 5, the cycle time 

12 with TotI(12) = 10 cannot be realized, too. With the 

local lower bound LB3 = 13 a feasible solution is found in 

node 5 (UB = 13). Since the nodes 4 and 3 have the local 

lower bound value 13, the enumeration traces back to 

node 2 with the current local lower bound LB2 = 10. This 

local bound must be increased because no further 

maximal load of station 3 exists for cycle time 10. Due to 

the station load S3 = {2, 6}, the next trial cycle time is LB2 = 

11 with remaining total idle time 3. The resulting node 6 

is fathomed after increasing its local bound to 13. The 

same is true for all other black nodes. 

The example shows that the Local Lower Bound 

Method avoids repeatedly enumerating same parts of the 

tree, the main disadvantage of the Lower Bound Method 

(cf. Fig. 2). Furthermore, it provides a feasible solution in 

the first branch of the tree. Note that the new enumera-

tion technique builds almost the same tree as the 
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Procedure Branch(k) begin 

if k = m - 1 then 

begin 

UB := LB*; 

fix all not yet assigned tasks to station m and store 

solution as current incumbent; 

end 

else 

while LB* < UB do   (* outer loop *) begin 

SLk(LBfc) := max{0, LBk - TotI(LB*) 
k 

+ 2>(LB»)}; 

h = \ 

find first maximal load Sk+i for station k + l  with 

r(5t+i) € [SLjt(LBjt), LB*]; while Sk+i exists do   

(* inner loop *) begin 

LBjt+i := LBt; 

Branch(k + 1); 

(* recursive call of procedure branch*) 
find next maximal load Sk+i for station 

k + 1 with t(Sk+i) G [SLt(LBfc), LB*]; end 

increase LBt; end; 

end; 
Fig. 4. Procedure Branch. 

 

Lower Bound Method for c = 12 but generates station 

loads in another order according to increasing bounds. 

In the following sections, we give a more detailed 

description of the enumeration technique of SALOME-2, 

the way of adjusting the local lower bounds and the used 

dominance rules. 

 
4.3. The enumeration procedure 

The algorithm starts with the global lower bound 

LB := max{LBl, LB2, LB3} 

and the upper bound UB heuristically determined as 

described in Section 2. 

The enumeration is realized by the procedure 'Branch' 

in Fig. 4 which represents a recursive version of a 

depth-first-search branch and bound algorithm. The local 

lower bound LB0 of the root 
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( k  =  0 )  is initialized to the value of the global bound 

LB before calling Branch(O). The local lower bounds 

LB*+1 of nodes at level k + 1 are initially set to the value 

of the bound LB* of the father node at level k ,  

respectively. In each node at level k of the enumeration 

tree, all possible maximal station loads for station k + 1 

are enumerated explicitly or implicitly (cf. the inner 

loop of procedure Branch). In order to hold the current 

local lower bound LB*, only station loads feasible for 

the trial cycle time LB* are chosen for branching. 

Equivalently, the station times of those loads must be in 

the interval [SL*(LB*), LB*]. The lower bound 

SL*(LB*) is determined by the difference of LB* and 

the remaining total idle time. The latter results from 

reducing the total idle time TotI(LB*) by the idle times 

of the already built stations l , . . . , k  (cf. Section 2). The 

corresponding maximal station loads are systematically 

constructed by considering tasks in increasing order of 

their numbers. Note that the precedence graph is 

assumed to be topologically ordered and that the task 

order inside a station is not relevant for optimization. 

The enumeration scheme, which is not formulated in 

procedure Branch, is identical to that of EUREKA. In 

order to find good feasible solutions in the first branches 

of the tree, the tasks are renumbered by the renumbering 

procedure of FABLE described below. 

After examining all station loads feasible for the 

current local lower bound LB* it has to be increased to a 

value LB'* (see Section 4.4 for details). This leads to an 

enlarged interval [SL*(LB'*), LB'*] which makes 

additional station loads feasible. Since the new interval 

includes the former one [SL*(LB*), LB*] as a 

subinterval, only not yet tried maximal loads with 

station times in the intervals [SL*(LB'*), SL*(LB*)) or 

(LB*, LB'*] are to be considered for the new local lower 

bound value LB*. The interval enlargement is 

repeatedly done until LB* is no longer smaller than UB 

(cf. the outer loop of procedure Branch). 

The recursion terminates when loads for m  —  1 

stations have been built (cf. the first condition in 

procedure Branch). In this case, all remaining tasks are 

assigned to station m ,  and a solution with cycle time 

LB* results. 

The renumberii.g procedure of FABLE which 

preserves a topological ordering is as fonVws. Initially, 

all tasks are not marked. In each of n  iterations i  = 1,..., 

n ,  one not marked task with largest operation time and 

no or only marked predecessors gets the number i  and 

is marked. Ties are broken with respect to decreasing 

numbers of immediate successors and increasing orig-

inal task numbers. In our example, the renumbering 

procedure leads to the original task numbers. 

 

4.4. Adjusting lower bounds 

 

In the enumeration procedure of Section 4.3, the 

incrementing of local lower bounds plays an important 

role. Due to the assumed integrality of task times, an 

obvious increment is 1. In order to avoid checking 

impossible trial cycle times and to enlarge the local 

lower bound by a minimum value concurrently, station 

loads not being part of the current station time interval 

are considered. Let 5
+
 denote the smallest station time 

of a load S*+1 larger than the cycle time LB* and S ~  

denote the largest station time smaller than SL*(LB*) of 

a load S* + 1 which is maximal with respect to LB*. 

Using these terms, the next possible value LB* of the 

local lower bound LB*, is determined by formula (2): 

(2) 

In the case of S ~ = 0 ,  no maximal load with a smaller 

station time than SL*(LB*) exists. Then only loads with 

station times larger or equal S
+  

are left for branching 

and LB* can be set to S
+
. Otherwise, it has to be 

checked whether the realization of a load with time 5
+
 

or 5" in station k  + 1 leads to a lower increment of the 

local lower bound. If t ( S k + i )  =  S ~  would be realized, 

the new value of LB* follows from applying the bound 

LB1 to the reduced problem with stations k + 2,..., m. 

In our example, the initial bound of the root node 0 is 

LB0 = 10 (cf. Fig. 3). Hence, Totl(lO) = 0 

 

? n - k— l  
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(10) = 10. Only the load S t  = {3, 

4} is feasible for station 1 because it has station time 10. 

After examining the corresponding subtree LB0 has to 

be increased. Due to the loads {1} and {1, 3}, the values 

of S ~  and S
+
 are 6 and 11, respectively. The new local 

lower bound is 

LB0==min{ll, f(50-6) /4 l}  = 11 

with Totl(ll) - 5 and SL0(11) = 11 - 5 = 6. Now, the only 

maximal load 5, = {1, 3} is used for branching. At the 

next revisit of the root node, the local bound is increased 

to S
+
 = 12, the station time of the load S y  =  {1, 2}, 

because no load which is maximal for cycle time 11 and 

has a station time smaller than 6 exists (5~=0). After 

examining the subtree with the load {1, 2}, the lower 

bound is increased to 5
+
= 16, and the root node is 

fathomed because of UB = 13. In node 3, the new value 

of the local lower bound results from 5""= 7 and S  
+

 =  

16. It is computed by 

LB3==min{16, [(50-30-7)/l]} =13. 

Note that the values S
+

 and S ~  for adjusting the bounds 

can be determined while enumerating the loads which 

are feasible for the current local lower bounds, 

respectively. 

 

4.5. Logical tests and fathoming 

 

The Local Lower Bound Method already contains a 

bounding mechanism. In each node, branching is 

performed according to monotonously increasing values 

of the local lower bound LBk. Hence, a node is fathomed 

whenever the value of LBk reaches or exceeds UB, the 

cycle time of the incumbent solution. In this section, we 

describe further rules (dominance and reduction rules) 

which help to reduce the size of the enumeration tree. 

 

Definition 1. A task which is not yet assigned to any 

station is called available for station k + 1 in a node at 

level k of the enumeration tree if each of the preceding 

tasks is already assigned to one of the stations 1,..., k ,  or 

is already contained in the load S k + 1 .  
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Definition 2. A task h potentially dominates a task if Ff 

cfft* and t j ^ t h  hold. In the case of t j  =  t h  and F *  

=F/I*, the lower indexed task potentially dominates the 

other one. 

 

Maximum load rule. As already mentioned, only 

maximal loads have to be considered. As a consequence, 

all loads which can be extended by an available task 

without exceeding the current trial cycle time YSk are to 

be excluded. 

 

Jackson dominance rule. A load S k  +  ]  can be 

excluded if there is an available task h which potentially 

dominates a task /'eSt+1 and 

t ( S k + l ) - t j  +  t h < L B k  

holds. 

This rule is based on the one given by Jackson (1956). It 

uses the fact that all successors of task j are successors 

of task h as well and cannot start before task h is 

performed. Hence, the sequence of j and h is without 

consequence for the successors of /. The condition t j  <  

t h  of Definition 2 guarantees that the station time will 

not decrease if h replaces in Sfc + 1 and the second 

condition of the rule secures that the current lower 

bound LBt remains valid. 

In our example, task 4 is potentially dominated by 

task 1, task 6 by task 2, and task 7 by the tasks 3, 4, 5, 

and 6. The Jackson dominance rule avoids building 

nodes 14 and 23 due to the fact that task 7 can be 

replaced by the dominating task 4 in the respective loads 

for station 2. Furthermore, the nodes 9, 13, 18, and 22 

would be avoided by the rule. 

 

Extended maximum load rule. Consider the current 

branch of the enumeration tree which leads to a node at 

level k .  Assume Ah to be the smallest operation time of 

a task which has been available in station h  = 1,..., k .  

Then, for station k + 1 only loads with station times 

smaller than 

m m { t ( S h )  + A h \ h  =  l , . . . , k )  

have to be considered, and the respective node can be 

fathomed if the local lower bound reaches or exceeds 

this value. 
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takes into consideration that the load of lome 

station h loses the property of being maximal if in 

station i + 1 a load is realized which causes the local 

lower bound (i.e., the cycle time) to be larger or equal 

t (S h )  + A h .  

On the one hand, the extended maximum load rule 

results in large reductions of the enumeration tree in 

most cases. On the other hand, it may prevent finding 

feasible solutions in the first branches of the tree. The 

latter problem can be illustrated by the following 

example. Imagine, that a load S t  for station 1 is feasible 

for the lower bound LB0 of the root node. Furthermore, 

we assume that no solution with load St and cycle time 

LB0 exists and that the load S¡ can be extended by an 

available task to a load with station time LB0 + 1 (at the 

next revisit of the root). Then, the extended maximum 

load rule fathoms all nodes of the subtree following S x  

whenever their local lower bounds are increased. Hence, 

the procedure acts as a Lower Bound Method in this 

subtree and no feasible solution is found there. In the 

case of large problem instances, such subtrees may be 

very large so that no feasible solution is found within a 

prespecified time limit. 

In order to simultaneously use the reduction 

capabilities of the extended maximum load rule and to 

find feasible solutions soon, the application of the rule is 

controlled by the following strategy which has been 

found by parameter adjusting. 

• The rule is not used for the first m
2
 nodes of the 

tree. 

• Furthermore, the rule is not applied to a node at 

level k if 

ln(UB-LB0)/(m-/t) 

with the parameter 

a = 1.5-ln(LB0)/m, 

holds. This condition includes two aspects. First, it is 

desirable to improve the upper bound UB if the 

difference between UB and the (global) lower bound LB0 

is large. Second, it is not expensive to complete a 

solution when only few stations remain (small value of 

m -  k ) .  The bound difference is transformed into a 

logarithmic value in of Operational Research 91 (1996) 367-385 

 

order to make it comparable to the station difference. 

Permutation rule. In any node at level k,  a load S k + 1  

does not need to be considered if 

max{;' e S k +  J < min{j  e S k]  

holds. 

 

As a consequence of the topological numbering of 

tasks, the condition of the rule guarantees that no task in 

S k + l  is a successor of a task in S k .  Therefore, the loads 

S k  and S k + 1  of stations k  and k + 1 can be exchanged 

without violating precedence constraints. For example, 

consider the loads S x  = {3, 4} and S 2  = {1, 2} which 

lead to node 7 in the tree of Fig. 3. Node 7 can be 

fathomed because the load permutation S 1  =  {1, 2} and 

S 2  = {3, 4} is also examined (node 20). 

 

Prefixing tasks. All tasks ; with 

£,(UB - 1) = L;(UB - l ) - k  +  l  

are prefixed to station k + 1 in a node at level k.  

 

The prefixed tasks must be assigned to the respective 

station in order to find a feasible solution with a cycle 

time smaller than UB. 

The rules described above are applied to every 

subproblem at a level k in the following way. First of 

all, prefixing of tasks is performed which may lead to a 

problem reduction. Now, all possible loads of station k  

are enumerated. For each trial load the maximum load 

rule, the permutation rule and the Jackson dominance 

rule are applied in the given order. The remaining loads 

result in new subproblems which are treated in the same 

way. Whenever the local lower bound of a node is 

increased the extended maximum load rule is applied 

according to the above strategy. The original problem is 

solved to optimality when all nodes are completely 

branched or fathomed. 

 

 

5. A bidirectional approach 

In Section 4, we describe a version of our branch  

and  bound  procedure SALOME-2 
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Fig. 5. Backward enumeration for the example problem. 

(hereafter called UniFor) which works from station 1 to 

m in an unidirectional, forward oriented manner. For 

several types of optimization problems bidirectional 

algorithms are shown to be more successful than 

unidirectional ones (cf., e.g., Lawler, 1991). As 

indicated by Scholl and Klein (1994) as well as Scholl 

and VoB (1994), this is the case for assembly line 

balancing problems, too. Hence, we describe a 

modification of SA-LOME-2 which uses a flexible 

bidirectional branching strategy. 

An easy adaptation can be made to use the algorithm 

of Section 4 in a backward manner. This is achieved by 

applying it to the reversed precedence graph which 

results from reversing the directions of all arcs (cf., e.g., 

Saltzman and Baybars, 1987). Tasks are considered in 

order of decreasing task numbers during enumeration. 

In the sequel, this version of SALOME-2 will be named 

UniBack. 

The enumeration tree of Fig. 5 is built by UniBack 

for our example. Only one branch, which represents the 

optimal solution S5 = {10}, 54 = {9, 8}, 53 = {7, 6, 5}, S2 

= (4, 3}, S1 = {2, 1}, is constructed because the lower 

bound LB0 of the root node can immediately be 

increased to 12. 

The example shows that the planning direction may 

have a considerable influence on the solution effort of 

the algorithm. In order to take advantage of this fact, it is 

desirable to be able to use both planning directions 

simultaneously in form of bidirectional branching. 

Simple bidirectional versions of SALOME-2, BiFor and 

BiBack, are obtained by considering stations in the 

order 1, m ,  2, m - 1,..., \ ( m  + D/21, or m ,  1, m  -  1, 

2,..., l(m + l)/2J,respectively. These strategies swap 

between forward steps (choose the first not yet 

considered station) and backward steps (choose the last 

not yet considered station). In backward steps, the 

reversed precedence graph is considered. 

A more flexible approach (BiFlex) uses a priority 

based strategy to decide on the branching direction. 

Within this strategy, a mean value T ( k )  of operation 

times per station serves as priority criterion. For its 

definition we introduce 

c - =  UB- 1, 

the maximum cycle time of an improved solution and 

the set 

A k ( c )  - {;|*eSI,(c)} 

of tasks potentially assignable to station k for the 

maximum cycle time c: 

£,eWV(
L
^)-£;(c-) + l ) )  

T { k )
-  

\ A k ( c ) \  

for k  =  \ , . . . , m .  (3) 

In (3), the operation times of all tasks j ,  which are 

potentially assignable to a station k ,  are 
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 j          
1 2 3 4 5 6 7 8 9 10 

t j  6 6 5 5 4 5 4 2 9 4 

E j ( c )  1 1 1 1 2 2 2 3 4 4 

L/c) 3 4 3 3 4 4 4 4 5 5 

 

Table 4 

Earliest and latest stations in the root node 
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Fig. 6. Bidirectional enumeration tree for the example problem. 
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proportionately distributed among the stations of the 

station interval Sly(c). The sum of these parts is divided 

by the number of potentially assignable tasks resulting 

in a mean value T ( k )  of the operation times of tasks for 

station k .  

Let k f  and k b  be the next stations to be considered 

in forward and backward direction, respectively. Then, 

the following priority rule decides on the branching 

direction: 

Perform a forward step, i f T ( k { )  >  T ( k b )  or T ( k { )  

=  T ( k h )  and 

\ A k < ( c ) \ < \ A k b ( c ) \ .  

In all other cases, make a backward step. 

This simple rule is based on the longest processing time 

first rule which is successfully used in many 

unidirectional algorithms for SALBP-1 and other 

problems (cf. Scholl and Klein, 1994, for a foundation). 

It enables BiFlex to decide in each subproblem on the 

planning direction for the next step depending on the 

data of the respective reduced problem. 

We illustrate the proceeding of BiFlex by our 

example and start with UB = 15 (c = 14). Table 4 

contains the earliest and latest stations in the root node. 

Fig. 6 shows the resulting enumeration tree. 

The first decision is to choose among the stations k f  = 

1 and k h  =  m  = 5. Due to 7(l) = (f+ f+ f+ f)/4=1.71 and 

7X5) = (f + |)/2 = 3.25, 

a backward step is preferred. After increasing LB0 

from 10 to 12 and building the load S5 = {10}, the 

values of L,(c) have to be modified (those of £y(c) are 

not affected); see Table 5. 

Because of 7(1) = 2.29 < 7(4) = 5, the station 4 is 

considered in a backward step. The load 54 = {9, 8} is 

branched and the latest stations remain valid for the not 

yet assigned tasks 1,..., 7. Hence, 7(1) keeps its value. 

Due to 7(3) = 2.03, the next step is a forward one. After 

assigning tasks 1 and 2 to station 1, the stations 2 and 3 

as well as the tasks 3,..., 7 build the reduced problem 

with earliest stations E j i c )  = 2 for / = 3, 4, 5, 7 and 

E 6 ( c )  = 3 and the latest stations of Table 5. Because of 

7(2) = 7(3) = 2.875 and I A 2 ( c )  I = I A 3 ( c )  | = 4, the 

tie breaker of the rule chooses station 2 in a forward 

step. Since no loads feasible for the local lower bound 

of 12 are available, it is increased to 13. For this cycle 

time the current partial solution can be completed by S 2  

= {3, 4} and 53 = {5, 6, 7}. Only in node 2 another load 

(of station 1) feasible for cycle time 12 is available. 

 
 

; i 2 3 4 5 6 7 8 9 

Lj (c )  2 3 2 3 3 3 3 4 4 

 

Table 5 

Latest stations in node 1 
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6. Computational results and 

381 

LB 

In this section, we report on results of computational 

experiments comparing existing algorithms and several 

versions of SALOME-2. 

 

6.1. Data sets and experimental conditions 

 

In the literature, no benchmark data sets are available 

for SALBP-2. We collected two data sets with 128 and 

174 instances, respectively, which are based on 

problems (precedence graphs) described in the 

SALBP-1 literature. The data sets contain 9 and 8 

different problems with 25 to 297 tasks. For each 

problem a range of station numbers is used to construct 

several instances (defined by a precedence graph and a 

number m of stations). The complete problem 

definitions and solutions are given in Scholl (1993). 

All tests are performed on an IBM-compatible 

personal computer with 80486 DX2-66 central 

processing unit. Every tested algorithm is coded by 

means of Borland's Pascal 7.0 and is applied to each of 

the 302 problem instances of both data sets with a time 

limit of 500 CPU seconds. If the time limit is reached 

{time out for short) without proving the current 

incumbent solution to be optimal, only a heuristic 

solution is provided. Then, the obtained solution is 

characterized by the current global lower bound LB and 

the current upper bound UB. The quality of this solution 

can be measured by the relative deviations 

UB 

devUB := 

devLB — 

of the upper and the lower bound from the 

optimum cycle time c * ,  respectively. If c *  is 

presently not known, the best available lower bound 

value is used for computing deviations. 

The procedures are compared with respect to the 

following measures (based on 302 instances): 

# opt.       : Number of instances for which an 

optimal solution is found and proven. 

# fail        : Number of instances for which the 

initial feasible solution is not improved. 

av.dev UB : Average relative deviation of UB 

from optimality in %. max.dev UB: 

Maximum relative deviation of UB 

from optimality in %. av.dev LB : 

Average relative deviation of LB 

from optimality in %. av.cpu       : 

Average execution time in seconds. 

6.2. Comparing several SALBP-1 based search methods 

In Section 3.1, different general search methods 

which determine the minimal cycle time by solving 

SALBP-F instances for several trial cycle times are 

described. We report on a comparative evaluation of the 

Lower Bound Method (LBM), the Binary Search (BS), 

the Fibonacci and Binary Search (FBS) and the Binary 

Search with Pre-specified Entry Point (EBS). 

As initial values for thé boundaries of the search 

interval [LB, UB], we take the lower bound 

 

 

 

Table 6 

Comparison of search methods 

LBM BS FBS EBS 

# opt. 

# fail 

av.dev UB 

max.dev UB 

av.dev LB 

av.cpu 

150 

152 24.17 

99.96 

-0.22 

264.06 

141 

0 

1.25 

11.84 

-0.40 

282.50 

150 

126 15.95 

99.96 

-0.28 

264.24 

140 

32 7.10 

99.86 

-0.40 

281.50 

100% 

100% 
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LB1 and the upper bound which is heuristically 

determined as described in Section 2 (Hackman et al., 

1989, use a theoretical value of UB). Two different 

transformations are examined by considering the tasks 

in the original and the reverse ordering of their numbers, 

respectively. Since the initial UB is often far away from 

the optimal cycle time, we exclude the upper bound 

method from the test. 

Within each of the four tested search methods, a 

version of FABLE which is modified to solve feasibility 

problems (SALBP-F) is applied. The results are 

summarized in Table 6. 

Table 6 shows that LBM and FBS solve more 

instances to optimality than the other procedures 

because the lower bound cycle times LB1 are optimal 

for many problem instances. In these cases, LBM and 

FBS check only one trial cycle time while the other 

methods need more iterations. On the other hand, LBM 

fails to find a feasible solution at all in case of exceeding 

the time limit which occurs for more than half of the 

instances. Then, only the initial feasible solution with a 

worst case deviation of almost 100% is available. The 

same problem appears with FBS when it runs out of 

time in the Fibonacci Search phase. EBS fails to 

improve the initial solution if the first trial cycle time is 

too small or solving the respective SALBP-F instance 

takes too much time. Only BS finds feasible solutions 

for all instances. Consequently, it shows the best aver-

age and maximum deviations of UB from optimality. 

The worse values of the other methods result from the 

instances for which they are not able to improve the 

initial solutions. With respect to the average 

computation times (including 500 seconds in case of 

time out) LBM and 

FBS are better than the two other search methods be-

cause they find more optimal solutions and need fewer 

iterations for the respective instances. Furthermore, 

they result in better lower bound deviations. 

The results can be summarized as follows. Only BS 

reaches acceptable solutions for all instances. While 

performing well for many instances, the search 

methods LBM and FBS fail to improve the initial 

feasible solution for harder problems. The choice of the 

particular first trial cycle time by EBS does not seem to 

be advantageous because this cycle time is not 

appropriate in some cases. 

 

6.3. Comparing unidirectional and bidirectional versions of 

SALOME-2 

 

In this section, we report on a comparison of the 

different versions UniFor, UniBack, BiFor, BiBack, 

and BiFlex of SALOME-2. The bounds LB and UB are 

determined as described in Section 6.2. In Table 7, we 

present a summary of the results. 

The algorithm UniFor is outperformed by its mirror 

image UniBack. This indicates that the planning 

direction plays an important role with respect to the 

efficiency of the algorithm. The static bidirectional 

algorithms BiFor and BiBack are not able to improve 

the results of their unidirectional counterparts. On the 

contrary, they perform worse for some instances. The 

best results with respect to all criteria are obtained by 

BiFlex. Its flexible strategy is able to obtain solutions at 

least as good as the best of the four static algorithms for 

260 of the 302 instances. 

 

 

Table 7 

Comparison of different planning directions 

UniFor UniBack 

# opt. 164 184 

# fail 1 0 

av.dev UB 1.09 0.90 

max.devUB 10.05 11.73 

av.dev LB -0.33 -0.21 

av.cpu 242.74 208.71 

BiFor BiBack BiFlex 

nï m 2Î7 
1                      2 0 

1.24                    1.51 0.56 

53.22                  53.22 10.03 

-0.24 -0.19 -0.12 

228.99 210.92 157.03 
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6.4. Comparing SALOME-2 with existing procedures 

We compare the flexible bidirectional version BiFlex 

of SALOME-2 (shown to be effective in Section 6.3) 

with four existing procedures. Three of them use 

modified SALBP-1 algorithms in the framework of 

Binary Search which appeared to be the best search 

method (cf. Section 6.2). The chosen SALBP-1 solvers 

are FABLE, EUREKA, and SALOME-1 (cf. Section 

3.1). Furthermore, a version of the taskoriented branch 

and bound procedure of Scholl (1994) which directly 

solves SALBP-2 is included in the test (TBB for short, 

cf. Section 3.2). FABLE is applied as described in 

Section 6.2. Since EUREKA contains several parts, the 

remaining computation time is equally split up between 

the forward and the backward procedure in each 

iteration of the search process. If the time limit is 

reached only the heuristic procedure is applied for all 

remaining trial cycle times. This leads to total 

computation times exceeding the prespecified time limit 

of 500 seconds by about 7 seconds on average. 

The algorithms SALOME-1 and SALOME-2 reflect 

the relationship between SALBP-1 and SALBP-2. 

While SALOME-2 applies a Local Lower Bound 

Method with respect to the cycle time, SALOME-1 uses 

a very similar technique for the number of stations. In 

both cases, SALBP-F instances arise for temporarily 

fixed local lower bounds on the cycle time and the 

number of stations, respectively. Because of this close 

relationship between the two methods, they contain 

common components like the procedure for 

enumerating station loads, most of the dominance and 

reduction rules and the flexible bidirectional branching 

strategy. The main differences are that SALOME-2 

avoids repeated enumeration of parts of the tree and that 

it considers only possible cycle times. SALOME-1 is 

only used for solving feasibility problems within a Bi-

nary Search, i.e., no local bound enlargement takes 

place. 

The algorithm TBB originally contains a heuristic 

procedure with a tabu search meta strategy to obtain 

initial feasible solutions. In order to have equal start 

conditions, the heuristic is not used, and all algorithms 

start with the same lower and upper bounds as in the 

previous sections. Scholl (1994) describes a number of 

priority rules for selecting the next 

task-station-combination to be fixed in a node of the 

enumeration tree. Among these, one similar to the 

bidirectional strategy of SALOME-2 is chosen because 

it clearly outperforms the other rules. 

The five algorithms are applied to the combined data 

set with 302 instances in the same way as described in 

Section 6.2. The results are summarized in Table 8 (cf. 

Tables 6 and 7 for the results of FABLE (column BS) 

and SALOME-2 (column BiFlex), respectively). 

The algorithms SALOME-1 (with Binary Search) 

and SALOME-2 show quite similar results because of 

their close relationship discussed above. Only with 

respect to the maximal deviation SALOME-2 has a 

significantly smaller value. Both methods clearly 

outperform the other procedures. 

TBB does only well concerning the number of 

optimal solutions and the lower bound deviations. The 

large average and maximum deviations of UB from 

optimality are due to the enumeration scheme which 

orientates on improving the current UB instead of trying 

to hold a current lower bound like the SALOME 

procedures. Furthermore, it assigns only a single task in 

each branching step which requires the application of 

expen- 

 

Table 8 

Comparison of different algorithms 

FABLE EUREKA SALOME-1 TBB SALOME-2 

#opt. av.dev 

UB max.dev 

UB av.dev 

LB av.cpu 

141 

1.25 

11.84 

-0.40 

282.50 

178 

0.62 

11.86 

-0.55 

293.34 

215 

0.53 

15.25 

-0.11 

164.43 

201 

1.30 

17.86 

-0.21 

188.36 

217 

0.56 

10.03 

-0.12 

157.03 
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sive logical tests in order to avoid constructing badly 

utilized station loads. 

The results of the SALBP-1 procedures FABLE, 

EUREKA, and SALOME-1 in the framework of Binary 

Search confirm the findings of Scholl and Klein (1994) 

who compared these algorithms for several data sets of 

SALBP-1 instances. SALOME-1 significantly 

outperforms the other procedures which is mainly due 

to its flexible bidirectional branching strategy and its 

sophisticated bounding and dominance rules. EU-

REKA'S superiority to FABLE with respect to the 

number of optimal solutions and the upper bound 

deviations relies on the use of both planning directions 

as well as the heuristic. The better lower bound 

deviations and the shorter average computation times of 

FABLE can be explained by its bounding and 

dominance rules which are not included in EUREKA. 

m of stations minimizing the sum of idle times. This 

problem has a nonlinear objective function depending 

on c and m. Two possible solution approaches consist 

of iteratively solving SALBP-1 instances for several 

values of c,  or SALBP-2 instances for several values of 

m, respectively. Hence, further research may focus on 

examining whether SALBP-1 or SALBP-2 based 

procedures are more suitable for solving SALBP-G 

efficiently. 
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7. Summary and conclusions 

In this paper, we present solution procedures for 

SALBP-2 which consists of balancing the work on an 

assembly line such that for a given number of stations 

the cycle time is maximized. For this problem type only 

few methods have been proposed in literature so far. 

Almost all approaches apply procedures for the strongly 

related SALBP-1, which is to minimize the number of 

stations for a given production rate, in the framework of 

a general search method. Effective solvers for this 

problem type are the well-known algorithms FABLE 

and EUREKA as well as a combination of these 

methods, called SALOME-1. The latter has been used 

to develop a procedure, named SA-LOME-2, which 

directly solves SALBP-2. Computational experiments 

show that this new approach clearly outperforms former 

methods. To our knowledge, this is the first time that 

SALBP-2 procedures are comprehensively 

investigated. Due to the lack of appropriate data sets, a 

new one with 302 instances has been constructed. 

SALBP-2 as well as SALBP-1 are restricted 

versions of the general simple assembly line balancing 

problem (SALBP-G) which is to find a combination of 

the cycle time c and the number 
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