- =3
FORMATO DE DISTRIBUCION MODULAR - ANALISIS Y BALANCEO | L i =
Es-ru.o: ROWDY NUEVA 1-201212-2012 | PERS. BALANC. 12 CUOTA 100% 851 [FECHA: l 1a-dic-12
URID HORA_ |
]REFERENCuA; 607365.609204 I EFICIENCIA 65 % =T o
COSTURA
OPERACIONES i ESTANDAR PERSONAS STD BONGO
PREPARAR MARQUILLA PRMAPL 0,1800 018 W S
FIIAR MARGUILLA LATERAL FIMLPLEO ©.1970 0187 LHO.CAPAG 106
MARQUILLAR TRASERG MATRPL ©.2050 93 0208 e e
UNIR TIRI TRASERO. UNTTFID7 02870 031 0287 e pooma |
UMIR TIRO DELANTERO UNTDFI09 02510 bioed 0251 =
CERR LAGOS CELAFIOT 10710 ey 1071 i
AFINAR BOTAS AFBOFI00 05730 L 0573 hemos pesls
REMATAR BOTA REEBOPL 0352 662 03852 ocsesc | 106 fweciese | 0
COBLADILLAR BOTAS ABIERTAS DpoBOAE 006, e 0508 e PLA fuwa _Fi4
UNIR ENTREPIERNA UNENFIO3 86250 51 0625 pgion 12 Pesuemd U
0.00
; 2 REF REF
RESORTAR CINTURA !RECIP.E 5.2910 082 0,291 i
REMATAR ELASTICO REELPLOO 01260 i 0126 it i g |
COBLADILLAR CINTURA pocino 04530 oe0 0.454 aocsc | 106 |pwocuerc | 106
PULIR PUXIH £.5000 i 05 b FIL4 Jwa FiL4
REVISAR REPRMA 05000 e 08 bzl L S 12
DESMANCHAR Y REMALLAR DEREWMA 01010 il 0101 —— CERRAR TRO DELANTERC Y
TRASERQ
EMPACAR EMPRMAD 05519 id 0,551 |
TOTAL ESTRLO 67710 12.00 67710 |TABL. mnos LI i 57
- | 106
(e CLD |mwe FiL4
68720 COST. sonrcon | posuonl| T
DOBLADILAR BOTAS ABIERTAS] CERRARLADOS
s T84 fawmros 57
wocsesc | 106 fwocwesc | 53
hac FIL4 |Jase FIR
ssianscion | 5 £s1enacion . 8
R ENTREFIERNA RESORTAR CINTURA
PREPARACION T
86 hnTos 31
WO CEPAT |
OPERACIONES naa EsTanDAR PERSONAS STD 106 ecsrac 106
REQUERIDAS e CLP |wa PLA
S 05,0000 00 0.0000 | AsicuACIon ; 4 AsiEHACION | 3
0.0 ” REMATAR BOTAS
00000 2 o000 pamneusioy | R el
£.0000 an | _oooco | B 3
K v) iida s 61 [wenos 21
o e o unp capac | 106 UND CAPAC 106
TOTAL PREPARACION 0,0000 0.0 0,0000 M OFM_fwa ~ OFM
SIBHACIO 1 A 3
i EMPACAR
NIMJI"ZEI by 53
L1108
MODULO DIBUJO

METODOS

PUNTOS CRITICOS

205

ADITAMENTOS

L) Cddi_go FING-01
CiNiole 8A8. TOMA DE TIEMPOS TIPO e
. :] i ecna o E -

Fecha: REFERENCIA j!:.. ,LT\fQ LIDER qui‘v‘ca‘ CUMPLIMIENTO INICIAL i Ziw

Modulo: =1 ¥ ESTANDAR COTIZADO H>7 SUPERVISORA CUMPLIMIENTO FINAL

No.de Personas: 8= METAHORA AA23 HORA INIC. FINAL ~ PUNTOS DE MEJORA

CloNEs | NOWBRE OPERARIA . OPERACION T e T S L M T L B

t Hector Uniy “ilbes D N Y 64¢7 [FIL 551045 | OAESAHCAS [qUsS| A2/ 7 jpS42 | TTO
= = \Jhw s, D geae QA& R\ 34|04 O 0A | - BUS|IGa | “ [a9 [+ 2

=z h,;_@ﬁr;a l)olobaek,ua(Yoeolo D CA oA R3S — | - 9265887 M54\ 3!

A4 | Jan blealille] oo UD 03256 [6,3] . | — b3s /e —pdls | 14s
R UNiY en DiEema, RS scne _ | o5 (QB/ —10S9 6| 0D,
& | Albey A enkhepPreme EV\REDER G - | — | (55 kY

3 |Jorq= resoder preAnine PR T eIRR - | - &F FI?,--}IQBSSH— e
SIS FAoer=a [lov PIG9>83 R3 | - |- 93 [Lox 36

R [FoR Accnd=>~ Pt e s PR RE - | - BLLIEEF6S a«ra?z:g/
1O [GloVE Mgpae,um IS4 &1 04 - | - |94 23 |-10A Qg‘_./
N |[fcte— P Can oL BYES[- S (5| %] O %3 163V

» s i S
4:56‘1
=
(DY b lal)
X

ESTUDIO DE TIEMPOS TIPO

TABLA RECONOCIMIENTO DE MAQUINARIA TABLA DE SUPLEMENTOS
MAQUINA CONVENCION N° AGUJAS MAQUINA SUPLEMENTO
PLANA PLA 12 PLANA 20.0%
PLANA BARRA ESCUALIZABLE PLE 2 FILETEADORA 19.3%
PLANA PASA PUNTO PPT 2 COLLARIN 18.8%
PLANA COSE CORTA PCC 1 COLLARIN SESGADORAS 18.8%
PLANA CADENETA PLC 12 COLLARIN DOBLADILLADORA Y COLLARIN EXPUESTO 18.8%
FILETEADORA FIL 12 FILETEADORA RESORTADORA 18.8%
FILETEADORA RESORTADORA FIR 12 PRESILLADORA 20.0%
PUNTADA INVISIBLE PIN 1 FUSIONADORA 15.0%
COLLARIN CLL 123 OJALADORA 18.8%
COLLARIN SESGADORA(2 & 3 Agujas) CLS 123 BOTONADORA 18.8%
COLLARIN DOBLADILLADORA CLD 123 FLAT SEAMER 21.0%
COLLARIN EXPUESTO CLE 1.2 3 CERRADORA DE CODO 18.8%
RIBETEADORA RIB 12 PLANA-ZIGZAG 20.0%
PRESILLADORA PRS 1 PICOETA 20.0%
BROCHADORA AUTOMATICA BRA MULTIAGUJAS(ENTRE 4 v 12 AGUJAS) 21.0%
BROCHADORA MANUAL BRM OFICIO MANUAL 12.5%
AUTOMATA DE PEGAR BOLSILLO AUB 1
PREHORMADORA DE BOLSILLO PRE
AUTOMATA DE DOBLADILLO AUD 1 2
JUMPING JUM 1
FUSIONADORA FUS -
OJALADORA PLANA OJP 1 FORMULA
OJALADORA LAGRIMA OJL 1
BOTONADCORA BOT 1
|FLAT SEAMER FLS 34 UNIDADES REALES HORA: MINUTOS HORA
CERRADORA DE CODO CCO 2 TIEMPG NORMAL * (1 + % SUPLEMENTO)
ZIGZAG ZIG 1
PICOETA PIC 1 2 TIEMPO NORMAL ; PROMEDIO CICLOS * % VALORACION OPERARIO.
MULTIAGUJAS(ENTRE 4 y 12 AGUJAS) MUL 1a12
OFiICIO MANUAL OFM
PRENSA PRE
MESA DE VACIO MES
PREHORMADORA PRH
PARIS PAR
TOPPER TOP
LEGGER LEG
ESCALA DE VALORACION
TOPOS DE ESFUERZOS ITEMS OBSERVACIONES
Pierde el liempo claramentie Dar vuelias innecesarias en busca de
A) Esfuerzo deficiente 30% Falla de interés en el trabajo herramienta o material. Efectoa mas
Le moléstan las sugeréncias. movimienios de los necéesarios, manitiene én
oo isas tgndenflas que el anterior Es medianamente sisiematico, pero no sigue
B} Esfuerzo regular 50% pi?e::‘a“;z;:;::::: I:oa: poco agrado siempre el mismo ofden, trabaje tadribinn con
: demasiada exacliiud, hace su irabajo
. Su alencion parece desviarse del {rabajo. |demasiado dificil
. Trabaja con consistencia
. Mejor que el regular Tiene una buena distribucion en su area de
) Esfuerzo promedio 75% Es un poco escéplico sobre la honradez |irabajo, planea de antemano, trabaja con
del observador de tiempos o de la buen sistema.
direccién.
Pone interés en el trabajo
D) Esfuerzo bueno 100% Muy poco o ningun tiempo perdido Esta bien preParado y tiene en orden su
No se preocupa por el observador de lugar de trabajo
liempos
. Trabaja con rapidez Reduce al minimo los movimientos
E) Esfuerzo excelente 125% _ Uliliza 1a cabeza tanto como las manos |innecesarios, trabaja sistematicamente con
. Toma gran interés en el irabajo Isu mejor habilidad
. Se lanza a un paso imposible de
- : mantener constantemente
RHE L e s . El mejor esfuerzo desde el punto de vista
menos el de la salud.

FORMATO DE DISTRIBUCION MODULAR - ANALISIS Y BALANCEO I %,
[EsTiLo: mALIBU BABY FONDO DUO 2.2012] PERS.BALANC. 12 GUOTA 100% 966 |FECHA: | 18-dic-12
UHID AORA
IREFERENCIA: 609182..609184 | EFICIENCIA 65% R Y
o
COSTURA
OPERACIONES ey ESTANDAR PERSONAS
REQUERIDAS
FLIAR MAROQUILLA BANDERA FIMABAFL 01420 o3¢ s
FLSIOHAR MARCAILLA TALLA FUEMFL22 02610 b
LR HOMBROS [UHHOR 503 03310 i
RECOGER FREMTE REFEFL1Y s
CERRAR CUELLO CECURLOMGE| 02470 el
FLIAR CUELLO EN Y ~f lecueioos 22860 biiad !
FEGAR CUELLOENY Y e o9 CRRRARY ATRACAR SLUELLO
[PESAR CiITA CLELLO FECICOD0E e P
348 MANGAS SEMACOSE on umniros 20 [umasios 30
MONTAR MANGAS momarioote] oaa10 faed UNO.CAPAC. 121 fmbCAMAS, 121
cerRAR LADOS MARGULLANDO cELAMA? 65350 heiad
|OOBLADILLAR RUEDD. DoRUZAY2 63660 G0 G
FULIE FRENDS PUFRIATS 05 s
REVISAR FRENDA FEERIA 1S o8 hot
08 SMANCHE 7 REMALLE DERENIA1S 50519 L]
FLAE MAROUILLA CODIGO DE BARR FuaLpLi1 61205 038 o
FECOGER COPA MANGAS PECOFL il ;
|ASENT CHITA DOBLAY 2 BT ASCIFL s =
= @
oo
.00
o0
0.00 1A
0.0 [ASKSHACKN
e ot sesth wnnss FecaR CUTA CUELLS
TOTAL ESTILO TABLERO 69630 12,0000
TOTAL ESTILO SEGUIMIENTO 6.0120 i) bt Lol 50
T o caese f 121 |mncasac i "
~ [|we PLA |wo PLA Z
TERMINACION -
/ y 6| Cf
RECOOER COPAMAHGAS | ASENT GINTA DOBLA/2 EXT
OPERACIONES o ESTANDAR PERSONAS i D
kAL e FUAR MARGUILLA BAHCERA
LAvAR ERENDA LAFRIIAD 2551 15 os b e 55
EuLIR PRENOA FUERIAZE 95 400 ho.CAMC. | UNO CAPAC,
leevisae FRENCA REPRIAT o hd o _ FR | s
EVEACAR FRELIDA EMERIAIT w752 e it S (e, S . \
¢ - | \
DESMANCHAR ¢ BENALL2S CEREMAIS ‘:‘ REFUERIOMOIAR WSAST pouiatwibies /
w
600 hwios 50 TS 53 X
800 T B - I e 121
TOTAL TERMINACION 23000 ase o CLD |wo FILR
1 P 10
TERMINACION (I'z) | oomseaunruess s
o i + 2
wwitos ag 7 |uwwros 60
OPERACKWES [ESTANDAR PERSONAS asiels 4
REQUERIDAS ocaeac 1) 121
26000 000 OFM
0.0000 LX - er -
1500, — PULIR ¥ REVISAR
05000 He: gt dal o
Iy o 60 [umnos
w50 00 121 |wocsac 121
TOTAL TERMINACION 90000 000
MODULO
METODOS
x 2 O 1
PUNTOS CRITICOS
ADITAMENTOS
e e i et St e e e e I
I

ELSEVIER

EUROPEAN
JOURNAL OF
OPERATIONAL
RESEARCH

European Journal of Operational Research 91 (1996) 367-385 -=

Theory and Methodology

Maximizing the production rate in simple assembly line balancing
- A branch and bound procedure

Robert Klein, Armin Scholl *

Institut fur Betriebswirtschaftslehre, Technische Hochschule Darmstadt, HochschulstraBe 1, D-64 289 Darmstadt, Germany

Received August 1994; revised January 1995

Abstract

In this paper, a branch and bound procedure for the Simple Assembly Line Balancing Problem Type 2 (SALBP-2)
is described. This NP-hard problem consists of assigning tasks to a given number of work stations of a paced assembly
line so that the production rate is maximized. Besides, possible precedence constraints between the tasks have to be
considered. Existing solution procedures for SALBP-2 are mainly based on repeatedly solving instances of the closely
related SALBP-1, which is to minimize the number of stations for a given production rate. The proposed branch and
bound procedure directly solves SALBP-2 by using a new enumeration technique, the Local Lower Bound Method,
which is complemented by a number of bounding and dominance rules. Computational results indicate that the new

procedure is very efficient.

Keywords: Scheduling; Assembly line balancing; Branch and bound

1. Introduction

We consider the Type 2 of the Simple Assembly
Line Balancing Problem (SALBP-2) which arises in the
mass production of a single product. The assembly of
each product unit requires the execution of n tasks
(indivisible elements of work) with fixed operation
timestj (j =1,..., n). Precedence constraints partially
specify the order in which the tasks have to be
performed. They can be represented by an acyclic
precedence graph which contains nodes for all tasks
with operation times as node weights and arcs (i, j) if
task i has to be completed before task ; can be started. A
paced assembly line consists of m (work) stations,
connected by a conveyor belt onto which product units

are launched at a constant rate p. Due to the uniform
* Corresponding author.

movement of the belt, the production rate is equal to p.
The constant time interval 1/p between the arrival of
two consecutive units in all stations is called cycle time
c. Each stationk =1,...,m has repeatedly to perform a
subset Sy of the tasks on consecutive units. Such a set Sy
is called station load of station k, and the sum of
operation times of the contained tasks is referred to as
station time t(Sy). Since all tasks have to be performed
completely, the cycle time must not be smaller than the
maximum of all station times.

Using these assumptions, SALBP-2 is to find a
partition of the set of all tasks into disjoint sta-

0377-2217/96/515.00 © 1996 Elsevier Science B.V. All rights reserved SSDI

0377-2217(95)00047-X

368 R. Klein, A. Scholl/ European Journal of Operational Research 91 (1996) 367-385

3
=/ —

Fig. 1. Precedence graph.

tion loads Sy withk =\,2,...,m. For each arc (i, of the
precedence graph the relation h < k must hold if i e S,
and j eS;, The objective is to maximize the production
rate, or equivalently, to minimize the cycle time which
is determined by the maximal station time.

Remark: For ease of presentation we assume that tasks
are numbered according to a topological ordering, i.e. i
<j for all arcs (/, /). As objective we consider the
minimization of the cycle time.

SALBP-2 is usually present when changes in the
production process of a product take place. For
example, operation times may be reduced by using
alternative processing techniques. In this case, the
number of stations of the line may remain fixed.

We consider an example with 10 tasks and the
precedence graph of Fig. 1 (node weights indicate
operation times). An optimal solution with m = 5
stations is the partition 5x = {3, 4}, S, = {1, 5}, S3 = {2,

Table 1
Definition of terms

number of tasks

7}, 54=46, 8}, S5 = {9, 10} with the cycle time ¢ = 13,
which is determined by t(Ss).

The sequel of the paper is organized as follows. In
Section 2, we describe bound arguments for SALBP-2
which may be exploited by solution procedures. Section
3 surveys existing solution approaches. Most of these
procedures rely on the close relationship of SALBP-2 to
SALBP-1 which consists of minimizing the number of
work stations for a given cycle time. Section 4
introduces SALOME-2, a new branch and bound
algorithm, which is extended to a flexible bidirectional
approach in Section 5. The results of computational
experiments comparing existing as well as new
procedures are summarized in Section 6. Finally,
Section 7 contains conclusions which can be drawn
from this research.

2. Bounds for SALBP-2

Solving SALBP-2 includes two main tasks which
have to be accomplished simultaneously. First, a
minimal cycle time has to be determined. Second, an
assignment of all tasks to the m work stations with
loads observing the precedence constraints and station
times not exceeding the minimal cycle time has to be
found. Such an assignment is called feasible for the
respective cycle

operation time (task time) of task / — 1,.., nUj is assumed to be positive and integral)
maximum task time; fmin: minimum task time sum of task times

set of tasks which immediately precede (follow, succeed) task in the precedence graph set
of all tasks which precede (follow, succeed) taskj in the precedence graph number of

stations

station load, set of tasks assigned to stationk=1,2,...

station time of station k (= £.- ¢ s tj)

(realized) cycle time (= max{t(Sy) | k = 1,..., m))

lower (upper) bound on cycle time
idle time in station k (= ¢ - t(Sk))

total available idle time for a realized cycle timec (- m ¢ — fum)
lower bound on the station time to realize cycle time ¢ (= max{0, ¢ — Totl(c)})

smallest integer >x ; [x J: largest integer

==\(tj + T.n=p-tn)/C\. earliest station of task j for cycle time c

=m+1-\Uj+

e fth)/c\. latest station of task ~ for cycle time ¢

=\Ej(c), Ly(c)]: station interval of task ; for cycle time c

R. Klein, A. Scholl /European Journal of Operational Research 91 (1996) 367-385 369

time. Hence, the problem can be solved by itera-tively
checking for several trial cycle times whether or not a
feasible assignment of all tasks to m stations exists (cf.
Section 3.1 for such solution procedures). This approach
requires computing lower and upper bounds on the cycle
time. Furthermore, it is possible to reduce the number of
station loads which have to be considered for a certain
trial cycle time by exploiting the problem structure of
SALBP-2. The used terms are defined in Table 1.

Lower bounds for SALBP-2 can be obtained by
utilizing relationships to other combinatorial
optimization problems. By omitting the precedence
constraints SALBP-2 passes into the problem of
scheduling jobs (= tasks) on identical parallel machines
(= stations) with the objective of minimizing the
makespan (= cycle time). A simple lower bound LB1
for this problem (and for SALBP-2 as well) is obtained
by allowing job preemption, i.e., processing of a job
may be interrupted and continued on another machine.
Since jobs cannot be processed on two machines simul-
taneously, the bound is given by

LB1 « max{fmax: \twam/m] }
For our example,
LB1 = max{9, [50/51) = *°-

Another lower bound for the parallel machine
problem related to SALBP-2 is obtained as follows. For
ease of presentation, we assume that the tasks are
numbered according to decreasing operation times, i.e.,

tji>ty,, for;=1,...,n-1
Consider the m + 1 largest tasks 1,..., m + 1. A lower

bound on the cycle time for this reduced problemiis t;,, +
tm + x, the sum of the two smallest task times, because at

Table 2
Earliest and latest stations for m=5and c=1u

1 2 3 4 5

f. g 6 5 £ 4
Ey(ll) 1 2 1 1 2
2 3 3 4

5(1) 2 3

least one station contains two tasks. In general, a lower
bound LB2 is obtained by

n-1
LB2.= max™ £ f*. (1 *=1..

,1=0 m

For our example, we get LB2 =5 + 5 = 10 because the
six largest tasks are 9, 1, 2, 3, 4, and 6 with operation
times 9, 6, 6, 5, 5, and 5.

A main characteristic of SALBP-2 is the existence of
precedence constraints. Though they complicate the
problem, they provide information for additional
problem reduction. They restrict the possible
assignment of each task to a station interval which is
bounded by an earliest and a latest station, respectively
(cf. Talbot and Patterson, 1984). Depending on a trial
cycle time c, values for the earliest and latest stations
can be derived by

(,m+E 0.

\ hep," | (1)
(earliest station for task / = 1,...,«), and
Lj(c) mm=m+1 (I

(latest station for task j = 1,..., n).

Formula (la) takes into consideration that task ; must
not start before all preceding tasks have been finished. A
lower bound on the number of stations required for task
; and the tasks of the predecessor set P* is obtained by
dividing the corresponding sum of task times by the trial
cycle time c. Equivalently to (la), formula (Ib) considers
the task times of task ; and all its successors.

6 7 8 910
5 4 2 94~
3 2 4 55
4 4 4 5

370 R. Klein, A. Scholl / European Journal of Operational Research 91 (1996) 367-385

If the trial cycle time c is to be realized, each task j=1,...,
n must be assigned to a station in its station interval

sli(c) = [E;(c),L;(c)\.

Tasks whose station intervals enclose a certain station k
are potentially assignable to k.

If we assume ¢ = 11 to be the trial cycle time, we get
the values of Table 2 for our example of Section 1. Since
the station interval Slg(11) is empty for task 9, i.e., it
cannot be assigned to any station, no feasible solution can
exist for the trial cycle time 11. Note that due to £,(c)
<E/(c - 1) and Lj(c) > Ly(c - 1) smaller cycle times
cannot be feasible, too. Hence, the lower bound can be
increased to 12 for the example.

In general, a lower bound LB3 for SALBP-2 can be
defined as

LB3
—min{cl Ej(c) <L,(c) forallj =1,...n}.

For the trial cycle time ¢ = 12, the values of Table 3
result.
A simple upper bound on the cycle time is

UB := max{fmax, 2-[tsum/m\)

(cf. Coffman et al., 1978, as well as Hackman et al.,
1989). If LB1 > f.x, UB can be improved to LB1 + f. -
1 due to the following reflections (cf. Scholl, 1995). It is
always possible to determine a preemptive solution with
cycle time LB1 in which each task is either processed by
one station completely or is split up between two
consecutive stations k and k + 1 (cf. Mc-Naughton,
1959). This theoretical upper bound implies the idea for a
simple heuristic. Station 1 * is filled up by successively
assigning tasks in the order of the topological task
numbering until the station time is equal to or just
exceeds the cycle time LB1. The same procedure is

repeated for the stations 2, 3,..., m. For our example, the
heuristic determines a solution with a realized cycle
time of 13.

In the following, we outline some possibilities to
utilize the bound arguments for reducing the number of
station loads, which have to be examined in order to
find a feasible assignment for a certain trial cycle time.

Since only trial cycle times ¢ > LB1 are considered,
the total time m m ¢ available for processing a product
unit equals or exceeds the sum of operation times tgn.
Hence, a total idle time

Totl(c) :=m- ¢ -fyym

cannot be used for work, i.e., one or more stations are
not completely utilized. In such stations k, an idle time

I(c)-~c-t(Sy)

occurs. Each of these idle times 1 (c) forall k —1,...,
m is bounded by Totl(c). Therefore, a lower bound on
the station times of all stations is

SL(c) := max{0, c - Totl(c)}.

Station intervals with only one element can be used
to reduce SALBP-2 instances by prefixing because each
task with £,(c) = L,(c) must be assigned (prefixed) to
station £.(c) in order to find a feasible solution with
cycle time c. In our example, the tasks 8, 9, and 10 are
prefixed to the stations 4 and 5, respectively, for the
trial cycle time ¢ = 12 (cf. Table 3).

Furthermore, only maximal station loads have to be
considered. A station load is maximal with respect to a
cycle time c if no not yet assigned task can be added to
the respective station neither exceeding the cycle time
nor violating the

Table 3
Earliest and latest stations form=5and ¢ = 12
J
1 2 3 4 5 6 7 8 9 10
E/12) | | 1 1 2 3 2 4 45~
L/12) 2 3 3 3 4 4 4 4 4 5

R. Klein, A. Scholl/European Journal of Operational Research 91 (1996) 367-385 371

precedence constraints. In the example, the station
loads S, = {8, 9} and S5 = {10} obtained by prefixing
are maximal with respect to ¢ = 12, because none of the
tasks 5, 6, and 7, which are potentially assignable to
station 4, can be added to the load S,. Task 10 is the
only potentially assignable one for station 5. Hence,
idle times /4(12) = 1 and 75(12) = 8 occur in stations 4
and 5.

3. Existing exact solution approaches

In this section, we provide a short summary of
solution procedures for SALBP-2 presented in the
literature so far.

3.1. Approaches using SALBP-1 procedures

Most approaches are based on the close relationship
of SALBP-2 to SALBP-1 (minimize m for a given c).
Both problem types can be reduced to a common
feasibility problem, named SALBP-F. This problem is
to find a feasible task assignment to m stations for a
given cycle time ¢ or to ascertain that none exists.
Therefore, SALBP-2 can be solved by successively
considering instances of SALBP-F with m stations and
various trial cycle times of an interval [LB, UB] (cf.
Section 2). Solutions for SALBP-F are obtained by
using modified procedures for SALBP-1.

Procedures for SALBP-1

Since most research in simple assembly line
balancing focussed on SALBP-1, a large number of
exact solution procedures have been proposed (cf.
Baybars, 1986, Domschke et al., 1993, as well as Scholl,
1995, for surveys and comparisons). For heuristic
procedures see Talbot et al. (1986) as well as Scholl and
VOB (1994).

Most procedures exactly solving SALBP-1 are based
on the branch and bound principle as well as on dynamic
programming. In the last years, only branch and bound
procedures, clearly outperforming the existing dynamic
programming approaches, have been developed.
Among these, the algorithms FABLE of Johnson

(1988), EUREKA of Hoffmann (1992) and SALOME-1
of

Scholl and Klein (1994) seem to be most effective.
Further branch and bound procedures stem from Talbot
and Patterson (1984), Saltzman and Baybars (1987) as
well as Hackman et al. (1989). Some of the dynamic
programming procedures are those of Jackson (1956),
Held et al. (1963), and Schrége and Baker (1978).

FABLE enumerates solutions by successively
assigning tasks to the stations 1, 2,... according to a
priority list. The enumeration is organized as a
depth-first-search. Each station is maximally loaded
before a new one is opened. Various dominance and
bounding criteria are used for reducing the size of the
enumeration tree.

EUREKA starts with a simple lower bound SB = f
feum/Cl on the number of stations and iter-atively solves
instances of SALBP-F. If a solution with SB stations is
found, the algorithm stops with the optimal solution of
SALBP-1. Otherwise, SB is increased by one and the
procedure is started once more, i.e., a new enumeration
tree is built. Enumeration is done by systematically gen-
erating station loads (instead of assigning single tasks)
in form of a depth-first-search. In a first phase of the
algorithm, stations are considered in order of increasing
numbers (forward direction), a second phase builds
station loads in backward direction by reversing the
precedence graph. Each phase is executed for a
prespecified time interval with phase 2 starting after
phase 1 and using the actual lower bound SB. If both
phases fail to find an optimal solution, the heuristic of
Hoffmann (1963) is applied which may result in a
suboptimal solution.

SALOME-1 integrates and improves the most
promising components of FABLE and EUREKA.
Furthermore, some additional bounding and dominance
rules as well as a new bidirectional branching strategy
are included. This approach, which clearly outperforms
FABLE and EUREKA, is adapted to solving SALBP-2
in Sections 4 and 5 of this paper.

Each of the algorithms described above can easily be
modified in order to solve SALBP-F with m and ¢ fixed.
This is done by starting the procedures with the lower
bound m and fathoming nodes whenever the lower
bound has to be increased.

372 R. Klein, A. Scholl /European Journal of Operational Research 91 (1996) 367-385

Search methods for SALBP-2

With respect to the sequence in which trial cycle
times of the interval [LB, UB] are considered the
following general search procedures are distinguished
(cf., e.g., Mansoor, 1964, Wee and Magazine, 1981, as
well as Hackman et al., 1989).

» Lower Bound Method: Starting with a lower
bound LB, the cycle time is successively increased by
one until the respective SALBP-F instance is feasible.

» Upper Bound Method: First, an upper bound UB
on the cycle time is determined by a heuristic
procedure, or a theoretical value is computed (cf.
Section 2.1). Starting with UB, the cycle time c is
successively decreased by one until SALBP-F is
infeasible for ¢ - 1 or ¢ is equal to a lower bound. In
each iteration, the maximal station time of the found
feasible solution is used as new value of c.

» Binary Search: The search interval [LB, UB] is
successively subdivided into two sub-intervals by
choosing the mean element

c= [(LB+ UB)/2J.

If SALBP-F is feasible for c, the upper bound UB is set
to the maximum station time in the corresponding
solution. Otherwise, LB is set to ¢ +1. The search stops
with an optimum cycle time UB when UB = LB.

» Fibonacci Binary Search: The method contains
two steps. First, a Fibonacci Search is performed
following the basic idea of the Lower Bound Method,
i.e., the trial cycle times are LB, LB + F(I), LB + F(I) +
F(2),... using the Fibonacci numbers F(l) m=1, F(2) ~ 2,
and

F(i) ==F@J- 1) + F(/-2) fori>3.

If a SALBP-F instance with a trial cycle time c is not
feasible, LB is setto ¢ + 1. When a feasible cycle time ¢
is obtained, the Binary Search is applied to the
remaining interval [LB, c],

« Binary Search with Prespecified Entry Point: The
method differs from standard Binary Search only in
determining the first trial cycle time. Based on the
observation that for many problem instances the cycle
times close to LB are more likely to be optimal than
larger values, the first trial cycle time is determined by

the maximal value
of ¢ for which m = ff,,,/cl holds. The Binary Search
is applied to the remaining search interval. In our
example, the first trial cycle time is ¢ = 12.

3.2. Direct procedures for SALBP-2

In contrary to SALBP-1, only few exact methods
directly solving SALBP-2 are available.

Charlton and Death (1969) describe a general
branch and bound procedure which is also able to solve
flow and job shop problems with minor changes and
does not sufficiently utilize the particular structure of
assembly line balancing problems.

A specialized branch and bound procedure for
SALBP-2 has been developed by Scholl (1994). It
contains a heuristic procedure with a tabu search
strategy for determining good initial upper bounds.
Branching is performed as a depth-first-search by
assigning a single task to a station in each step. The
choice of the task-station-combinations is controlled by
priority rules. In contrast to most other procedures for
assembly line balancing problems, stations are not
considered in a fixed order. The algorithm contains
different ways of computing lower bounds exploiting
the structural properties of SALBP-2 described in
Section 2. The most effective bounding method is
based on minimal idle times in every station which can
be determined by solving particular knapsack
problems. Furthermore, the algorithm makes intensive
use of dominance and reduction rules.

4. SALOME for SALBP-2

We present a new branch and bound approach
which directly solves SALBP-2. It is called
SA-LOME-2 (Simple Assembly Line Balancing Opti-
mization Method for Type 2).

4.1. Analysis of search methods

In order to examine the performance of the search
methods presented in Section 3.1, the Lower Bound
Method is applied to our example (cf. Fig. 2). The
SALBP-F instances are solved by

R. Klein, A. Scholl / European Journal of Operational Research 91 (1996) 367-385 373

an enumeration procedure similar to that of EUREKA
which systematically builds maximal loads. We start
with the trivial lower bound LB1 = 10. Since Totl(IO) =
0, only station loads without idle time are feasible for
SALBP-F with ¢ = 10. Hence, only one station load is
possible in the first three stations, respectively. The
hatched node is fathomed because no load without idle
time is available for station 4. For ¢ = 11 the total idle
time is 5 and the station times must be in the interval
[6,11]. In the first branch of the respective tree, no idle
time occurs until the station load S; = {5, 6} with idle
time 73(11) = 2 is built. Hence, the remaining total idle
time for the reduced problem with stations 4 and 5 is
reduced to 3. Now, only loads with station times not
smaller than 8 avoid exceeding the total idle time. Since
only the maximal load 5, = {6, 8} with station time 7
exists for station 4, the respective hatched node is
fathomed. The other hatched nodes are fathomed
accordingly. After examining an enlarged tree forc =12
without success, a feasible (= optimal) solution is found
in the first branch of the tree for ¢ = 13.

The example reveals some disadvantages of
SALBP-1 based search methods:

o« They do not use results of computations
performed for previously considered trial cycle times

Fig. 2. Lower bound

(SALBP-F instances). Hence, large portions of
enumeration trees may repeatedly be constructed. In
our example, four trees containing common parts
(boldfaced in Fig. 2) have to be built by the Lower
Bound Method.

« Furthermore, these methods rely on the as-
sumption that all values of the search interval are
potential cycle times. This may lead to unnecessary
iterations if no combination of tasks with a station time
equal to a trial cycle time exists. For example, imagine
the trivial case of a problem with operation times which
are multiples of 100. Then, only multiples of 100 are
candidates for the optimum cycle time.

+ The practical application of solution procedures is
often restricted by limited computation time. In this
case, search methods, which examine infeasible
SALBP-F instances first, may not provide a feasible
solution at all.

4.2. Outline of the algorithm

In order to avoid the disadvantages stated above, a
procedure directly solving SALBP-2 is developed. It
contains a new enumeration tech-

ex=11: /Dfiﬁ_,@
247 ST @
45 g

2% g 4,
13,): N ‘J,—

for the example problem.

i —

/“\ MANG,

/7+-)\ Universidad

:) Tecnologica®

without success (no feasible completion of the partial soluof
Operational Research 91 (1996) 367-385

tion with cycle time LB exists), the lower bound of the

. Scholl / European Journal

the Local Lower Bound Method,
which exploits the observation that the relative differ-
ence between the minimal cycle time and an initial
lower bound is very small for a large number of
problem instances.

Branching is performed as a depth-first-search by
successively building loads for the stations 1,..., m.
Resulting subproblems (nodes of the enumeration tree)
are reduced problems of the same type with less stations
and a reduced precedence graph. The method starts
with a lower bound LB on the cycle time and proceeds
like a Lower Bound Method as long as possible in order
to find a feasible solution with cycle time LB. Hence, in
each node (which represents a partial solution of
already built station loads) only such maximal station
loads, whose idle times do not exceed the remaining
total idle time (with respect to LB), are branched. After
examining all loads feasible for the trial cycle time LB

node is locally increased. Note that the Lower Bound
Method fathoms this node. In order to avoid trying
cycle times impossible for the reduced problem, the
new value LB' of the local lower bound is determined
as the smallest one for which at least one not yet
considered station load is feasible. For LB' only those
maximal loads which have not been feasible for former
bound values are examined. Whenever loads for all
stations but station m have been constructed, a feasible
solution is obtained by assigning the remaining tasks to
station m. The cycle time of the best known feasible
solution serves as upper bound UB. A node is fathomed
when its local lower bound exceeds the value of UB.

The outlined enumeration procedure is illustrated by
means of our example. Fig. 3 shows the resulting
enumeration tree, the nodes are numbered in order of
their generation. The current local lower bounds are
given as node weights

Fig. 3. Local lower bound method for the example problem.

Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educacion Nacional NIT:

891.480.035-9 - Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206
www.utp.edu.co - Pereira (Risaralda) Colombia

http://www.utp.edu.co/

. Scholl / European Journal

with the respective remaining
total idle times. Loops mark the increase of a bound. Parts
of the tree which correspond to the same value of the
local lower bound are underlayed with the same pattern.
In our explanation below, we denote the local lower
bound of a node at level k of the tree, which represents a
partial solution with stations /, ..., k, by LB".

The procedure starts with the lower bound LBo = 10 as
well as the total idle time Totl(10) = 0 and builds the same
station loads as the Lower Bound Method for SALBP-F
with ¢ = 10 (cf. Fig. 2). In node 3, the only maximal load 54
= {6, 8} for station 4 has an idle time 74(10) = 3. Hence, the
partial solution S1 = {3, 4}, Sz = {1, 5}, S3 = {2, 7} cannot
be completed to a feasible solution with cycle time 10. In
contrast to solving a SALBP-F instance, the Local Lower
Bound Method does not fathom the node but increases its
local lower bound LBs to 13. The cycle times 11 and 12
are not possible in this node. For the cycle time 11 the
first three station loads of the partial solution show idle
times /]OD = /2(11) = 73(11) — 1. Since the only
maximal load Ss = {6, 8} of station 4 would result in the
idle time /4(11) = 4, the cumulated idle time of 7 would
exceed the total idle time TotlI(ll) = 5. Due to idle times
/i(12) = /2(12) - 73(12) = 2 and 74(12) = 5, the cycle time
12 with TotI(12) = 10 cannot be realized, too. With the
local lower bound LBs = 13 a feasible solution is found in
node 5 (UB = 13). Since the nodes 4 and 3 have the local
lower bound value 13, the enumeration traces back to
node 2 with the current local lower bound LBz = 10. This
local bound must be increased because no further
maximal load of station 3 exists for cycle time 10. Due to
the station load S3 = {2, 6}, the next trial cycle time is LBz =
11 with remaining total idle time 3. The resulting node 6
is fathomed after increasing its local bound to 13. The
same is true for all other black nodes.

The example shows that the Local Lower Bound
Method avoids repeatedly enumerating same parts of the
tree, the main disadvantage of the Lower Bound Method
(cf. Fig. 2). Furthermore, it provides a feasible solution in
the first branch of the tree. Note that the new enumera-
tion technique builds almost the same tree as the

of Operational Research 91 (1996) 367-385

Procedure Branch(k) begin

if k=m-1 then
begin
UB := LB%;

fix all not yet assigned tasks to station m and store
solution as current incumbent;

end

else

while LB* < UB do (* outer loop *) begin
SLk(LBtc) := max{0, LBk - Totl(LB*)

k
+ 2 >(LB»)};
h =\
find first maximal load Sk+i for station k + 1 with
r(5t+i) € [SLjt(LBjt), LB*]; while Sk+i exists do
(* inner loop *) begin
LBjt+i := LBt;
Branch(k + 1);
(* recursive call of procedure branch*)
find next maximal load Sk+i for station
k + 1 with t(Sk+i) 6 [SLt(LBfc), LB*]; end
increase LBt; end;
end;
Fig. 4. Procedure Branch.

Lower Bound Method for ¢ = 12 but generates station
loads in another order according to increasing bounds.

In the following sections, we give a more detailed
description of the enumeration technique of SALOME-2,
the way of adjusting the local lower bounds and the used
dominance rules.

4.3. The enumeration procedure

The algorithm starts with the global lower bound
LB := max{LBl, LB2, LB3}

and the upper bound UB heuristically determined as
described in Section 2.

The enumeration is realized by the procedure 'Branch’
in Fig. 4 which represents a recursive version of a
depth-first-search branch and bound algorithm. The local
lower bound LBy of the root

375

Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educacién Nacional NIT: 891.480.035-9 -
Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206
www.utp.edu.co - Pereira (Risaralda) Colombia

http://www.utp.edu.co/

Universidad
Tecnologica

dg p’\f’\j N, scholl / European Journal of Operator | Research 91 (96) 36”-385

(k = 0) isinitialized to the value of the global bound
LB before calling Branch(O). The local lower bounds
LB*,, of nodes at level k + 1 are initially set to the value
of the bound LB* of the father node at level Kk,
respectively. In each node at level k of the enumeration
tree, all possible maximal station loads for station k + 1
are enumerated explicitly or implicitly (cf. the inner
loop of procedure Branch). In order to hold the current
local lower bound LB*, only station loads feasible for
the trial cycle time LB* are chosen for branching.
Equivalently, the station times of those loads must be in
the interval [SL*(LB*), LB*]. The lower bound
SL*(LB¥*) is determined by the difference of LB* and
the remaining total idle time. The latter results from
reducing the total idle time Totl(LB*) by the idle times
of the already built stations I, ...,k (cf. Section 2). The
corresponding maximal station loads are systematically
constructed by considering tasks in increasing order of
their numbers. Note that the precedence graph is
assumed to be topologically ordered and that the task
order inside a station is not relevant for optimization.
The enumeration scheme, which is not formulated in
procedure Branch, is identical to that of EUREKA. In
order to find good feasible solutions in the first branches
of the tree, the tasks are renumbered by the renumbering
procedure of FABLE described below.

After examining all station loads feasible for the
current local lower bound LB* it has to be increased to a
value LB™ (see Section 4.4 for details). This leads to an
enlarged interval [SL*(LB'*), LB™] which makes
additional station loads feasible. Since the new interval
includes the former one [SL*(LB*), LB*] as a
subinterval, only not yet tried maximal loads with
station times in the intervals [SL*(LB'*), SL*(LB*)) or
(LB*, LB"] are to be considered for the new local lower
bound value LB*. The interval enlargement is
repeatedly done until LB* is no longer smaller than UB
(cf. the outer loop of procedure Branch).

The recursion terminates when loads for m — 1
stations have been built (cf. the first condition in
procedure Branch). In this case, all remaining tasks are
assigned to station m, and a solution with cycle time
LB* results.

The renumberii.g procedure of FABLE which
preserves a topological ordering is as fonVws. Initially,

all tasks are not marked. In each of n iterationsi =1,...,
n, one not marked task with largest operation time and
no or only marked predecessors gets the number i and
is marked. Ties are broken with respect to decreasing
numbers of immediate successors and increasing orig-
inal task numbers. In our example, the renumbering
procedure leads to the original task numbers.

4.4. Adjusting lower bounds

In the enumeration procedure of Section 4.3, the
incrementing of local lower bounds plays an important
role. Due to the assumed integrality of task times, an
obvious increment is 1. In order to avoid checking
impossible trial cycle times and to enlarge the local
lower bound by a minimum value concurrently, station
loads not being part of the current station time interval
are considered. Let 5* denote the smallest station time
of a load S*,; larger than the cycle time LB* and S~
denote the largest station time smaller than SL*(LB*) of
a load S* , ; which is maximal with respect to LB*.
Using these terms, the next possible value LB* of the
local lower bound LB*, is determined by formula (2):

(2)

5T it s o,
. 'sum -~ ~A-1'(MA) - $
LB =+« min{S™,
‘ ! 2n-k—I
if S->0.

In the case of S~=0, no maximal load with a smaller
station time than SL*(LB*) exists. Then only loads with
station times larger or equal S™ are left for branching
and LB* can be set to S*. Otherwise, it has to be
checked whether the realization of a load with time 5*
or 5" in station k + 1 leads to a lower increment of the
local lower bound. If t(Sy+i) = S~ would be realized,
the new value of LB* follows from applying the bound
LB1 to the reduced problem with stations k + 2,..., m.

In our example, the initial bound of the root node 0 is
LB, = 10 (cf. Fig. 3). Hence, Totl(I0) =0

Universidad

Tecno I Qgteau Scholl/European Journal

de Pereira

(10) = 10. Only the load S; = {3,
4} is feasible for station 1 because it has station time 10.
After examining the corresponding subtree LBy has to
be increased. Due to the loads {1} and {1, 3}, the values
of S~ and S" are 6 and 11, respectively. The new local
lower bound is

LBy==min{ll, f(50-6)/41} =11

with Totl(ll) - 5and SLy(11) = 11 - 5 = 6. Now, the only
maximal load 5, = {1, 3} is used for branching. At the
next revisit of the root node, the local bound is increased
to S* = 12, the station time of the load S, = {1, 2},
because no load which is maximal for cycle time 11 and
has a station time smaller than 6 exists (5~=0). After
examining the subtree with the load {1, 2}, the lower
bound is increased to 5'= 16, and the root node is
fathomed because of UB = 13. In node 3, the new value
of the local lower bound results from5™=7and S * =
16. It is computed by

LBa==min{16, [(50-30-7)/1]} =13.

Note that the values S* and S~ for adjusting the bounds
can be determined while enumerating the loads which
are feasible for the current local lower bounds,
respectively.

4.5. Logical tests and fathoming

The Local Lower Bound Method already contains a
bounding mechanism. In each node, branching is
performed according to monotonously increasing values
of the local lower bound LBy. Hence, a node is fathomed
whenever the value of LBy reaches or exceeds UB, the
cycle time of the incumbent solution. In this section, we
describe further rules (dominance and reduction rules)
which help to reduce the size of the enumeration tree.

Definition 1. A task which is not yet assigned to any
station is called available for station k + 1 in a node at
level k of the enumeration tree if each of the preceding
tasks is already assigned to one of the stations 1,..., k, or
is already contained in the load Sy ;.

of Operational Research 91 (1996) 367-385

377

Definition 2. A task h potentially dominates a task if Ff
cfy*and tj~ty, hold. Inthe case of tj = t,, and F*
=F,*, the lower indexed task potentially dominates the
other one.

Maximum load rule. As already mentioned, only
maximal loads have to be considered. As a consequence,
all loads which can be extended by an available task
without exceeding the current trial cycle time YS, are to
be excluded.

Jackson dominance rule. A load Sy . ; can be
excluded if there is an available task h which potentially
dominates a task /'eS,; and

t(Sk+1)-tj + t,<LBy
holds.

This rule is based on the one given by Jackson (1956). It
uses the fact that all successors of task j are successors
of task h as well and cannot start before task h is
performed. Hence, the sequence of j and h is without
consequence for the successors of /. The conditiontj <
ty of Definition 2 guarantees that the station time will
not decrease if h replaces in Si .+ ; and the second
condition of the rule secures that the current lower
bound LB, remains valid.

In our example, task 4 is potentially dominated by
task 1, task 6 by task 2, and task 7 by the tasks 3, 4, 5,
and 6. The Jackson dominance rule avoids building
nodes 14 and 23 due to the fact that task 7 can be
replaced by the dominating task 4 in the respective loads
for station 2. Furthermore, the nodes 9, 13, 18, and 22
would be avoided by the rule.

Extended maximum load rule. Consider the current
branch of the enumeration tree which leads to a node at
level k. Assume A, to be the smallest operation time of
a task which has been available in station h =1,..., k.
Then, for station k + 1 only loads with station times
smaller than

mm{t(Sy) +A,\h = 1,... k)

have to be considered, and the respective node can be
fathomed if the local lower bound reaches or exceeds
this value.

Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educacién Nacional NIT:

59 891.480.035-9 - Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206

www.utp.edu.co - Pereira (Risaralda) Colombia

http://www.utp.edu.co/

Universidad
J TecnOI(jgica, A Scholl / European

Journal

takes into consideration that the load of lome
station h loses the property of being maximal if in
station i + 1 a load is realized which causes the local
lower bound (i.e., the cycle time) to be larger or equal
t(Sp) + Ap.

On the one hand, the extended maximum load rule
results in large reductions of the enumeration tree in
most cases. On the other hand, it may prevent finding
feasible solutions in the first branches of the tree. The
latter problem can be illustrated by the following
example. Imagine, that a load S, for station 1 is feasible
for the lower bound LB, of the root node. Furthermore,
we assume that no solution with load S; and cycle time
LB, exists and that the load Sj can be extended by an
available task to a load with station time LB + 1 (at the
next revisit of the root). Then, the extended maximum
load rule fathoms all nodes of the subtree following Sy
whenever their local lower bounds are increased. Hence,
the procedure acts as a Lower Bound Method in this
subtree and no feasible solution is found there. In the
case of large problem instances, such subtrees may be
very large so that no feasible solution is found within a
prespecified time limit.

In order to simultaneously use the reduction
capabilities of the extended maximum load rule and to
find feasible solutions soon, the application of the rule is
controlled by the following strategy which has been
found by parameter adjusting.

« The rule is not used for the first m? nodes of the
tree.

« Furthermore, the rule is not applied to a node at
level k if

In(UB-LBg)/(m-/t)
with the parameter
a=1.5-In(LBg)/m,

holds. This condition includes two aspects. First, it is
desirable to improve the upper bound UB if the
difference between UB and the (global) lower bound LB,
is large. Second, it is not expensive to complete a
solution when only few stations remain (small value of

Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educacion Nacional NIT:

m - k). The bound difference is transformed into a
logarithmic value in of Operational Research 91 (1996) 367-385

order to make it comparable to the station difference.

Permutation rule. In any node at level k, a load Sy 1
does not need to be considered if

max{;' e Sx+ J<min{j e S(]
holds.

As a consequence of the topological numbering of
tasks, the condition of the rule guarantees that no task in
Sk+ is asuccessor of a task in Sy. Therefore, the loads
Sy and Sy, of stations k and k + 1 can be exchanged
without violating precedence constraints. For example,
consider the loads S, = {3, 4} and S, = {1, 2} which
lead to node 7 in the tree of Fig. 3. Node 7 can be
fathomed because the load permutation S; = {1, 2} and
S, ={3, 4} is also examined (node 20).

Prefixing tasks. All tasks ; with
£(UB-1)=L@UB-I1)-k + I

are prefixed to station k + 1 in a node at level k.

The prefixed tasks must be assigned to the respective
station in order to find a feasible solution with a cycle
time smaller than UB.

The rules described above are applied to every
subproblem at a level k in the following way. First of
all, prefixing of tasks is performed which may lead to a
problem reduction. Now, all possible loads of station k
are enumerated. For each trial load the maximum load
rule, the permutation rule and the Jackson dominance
rule are applied in the given order. The remaining loads
result in new subproblems which are treated in the same
way. Whenever the local lower bound of a node is
increased the extended maximum load rule is applied
according to the above strategy. The original problem is
solved to optimality when all nodes are completely
branched or fathomed.

5. A bidirectional approach

In Section 4, we describe a version of our branch
and bound procedure SALOME-2

891.480.035-9 - Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206
www.utp.edu.co - Pereira (Risaralda) Colombia

http://www.utp.edu.co/

Universidad
Tecnoldgica,”.

379

Scholl/European Journal of Operational Research 91 (1996) 367-385

de Pereira

-TUuB-=13

Fig. 5. Backward enumeration for the example problem.

(hereafter called UniFor) which works from station 1 to
m in an unidirectional, forward oriented manner. For
several types of optimization problems bidirectional
algorithms are shown to be more successful than
unidirectional ones (cf., e.g., Lawler, 1991). As
indicated by Scholl and Klein (1994) as well as Scholl
and VoB (1994), this is the case for assembly line
balancing problems, too. Hence, we describe a
modification of SA-LOME-2 which uses a flexible
bidirectional branching strategy.

An easy adaptation can be made to use the algorithm
of Section 4 in a backward manner. This is achieved by
applying it to the reversed precedence graph which
results from reversing the directions of all arcs (cf., e.g.,
Saltzman and Baybars, 1987). Tasks are considered in
order of decreasing task numbers during enumeration.
In the sequel, this version of SALOME-2 will be named
UniBack.

The enumeration tree of Fig. 5 is built by UniBack
for our example. Only one branch, which represents the
optimal solution Ss = {10}, 5,= {9, 8}, 5:={7, 6,5}, S,
= (4, 3}, S; = {2, 1}, is constructed because the lower
bound LB, of the root node can immediately be
increased to 12.

The example shows that the planning direction may
have a considerable influence on the solution effort of
the algorithm. In order to take advantage of this fact, it is
desirable to be able to use both planning directions
simultaneously in form of bidirectional branching.

Table 4
Earliest and latest stations in the root node

Simple bidirectional versions of SALOME-2, BiFor and
BiBack, are obtained by considering stations in the
orderl, m, 2,m-1,..,\(m +D/21,orm, 1, m - 1,
2,..., I(m + 1)/2J,respectively. These strategies swap
between forward steps (choose the first not yet
considered station) and backward steps (choose the last
not yet considered station). In backward steps, the
reversed precedence graph is considered.

A more flexible approach (BiFlex) uses a priority
based strategy to decide on the branching direction.
Within this strategy, a mean value T (k) of operation
times per station serves as priority criterion. For its
definition we introduce

c-= UB-1,

the maximum cycle time of an improved solution and
the set

Ag(c) - {;*eSl,(c)}

of tasks potentially assignable to station k for the
maximum cycle time c:

£.eWV(ng) +1)) 7.

VA (c)\

fork =\,...,m. (3)

In (3), the operation times of all tasks j, which are
potentially assignable to a station k, are

j

1 2 3 4 5 6 7 8 9 10

tj 6 6 5 5 4 5 4 2 9 4

Ej(c) 1 1 1 1 2 2 2 3 4 4

L/c) 3 4 3 3 4 4 4 4 5 5
Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educacién Nacional NIT:

891.480.035-9 - Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206
www.utp.edu.co - Pereira (Risaralda) Colombia

http://www.utp.edu.co/

Universidad)if
Tecnologica™.

Scholl/European Journal of Operational Research 91 (1996) 367-385

Station 5 Station4

Station I

Fo T |
v /?14 ’3'20 567 \
: L e \&

Station 2 Station 3

Fig. 6. Bidirectional enumeration tree for the example problem.

de Pereira
proportionately distributed among the stations of the
station interval Sly(c). The sum of these parts is divided
by the number of potentially assignable tasks resulting
in a mean value T (k) of the operation times of tasks for
station k.

Letk ¢ and k, be the next stations to be considered
in forward and backward direction, respectively. Then,
the following priority rule decides on the branching
direction:

Perform a forward step, ifT(k¢) > T(ky) or T(ky)
= T(ky) and

VA< (e)\<VAp(e)\.

In all other cases, make a backward step.

This simple rule is based on the longest processing time
first rule which is successfully used in many
unidirectional algorithms for SALBP-1 and other
problems (cf. Scholl and Klein, 1994, for a foundation).
It enables BiFlex to decide in each subproblem on the
planning direction for the next step depending on the
data of the respective reduced problem.

We illustrate the proceeding of BiFlex by our
example and start with UB = 15 (c = 14). Table 4
contains the earliest and latest stations in the root node.
Fig. 6 shows the resulting enumeration tree.

The first decision is to choose among the stations k =
land k, = m =5. Due to 7(I) = (f+ f+ f+ f)/4=1.71 and

7X5) = (f +[)/2 = 3.25,

a backward step is preferred. After increasing LB,
from 10 to 12 and building the load S5 = {10}, the
values of L,(c) have to be modified (those of £,(c) are
not affected); see Table 5.

Because of 7(1) = 2.29 < 7(4) = 5, the station 4 is
considered in a backward step. The load 5, = {9, 8} is
branched and the latest stations remain valid for the not
yet assigned tasks 1,..., 7. Hence, 7(1) keeps its value.
Due to 7(3) = 2.03, the next step is a forward one. After
assigning tasks 1 and 2 to station 1, the stations 2 and 3
as well as the tasks 3,..., 7 build the reduced problem
with earliest stations Ejic) =2 for/ =3, 4,5, 7 and
Es(c) =3 and the latest stations of Table 5. Because of
72)=7@B)=2.875and | A,(c) | =1 As(c) |=4 the
tie breaker of the rule chooses station 2 in a forward
step. Since no loads feasible for the local lower bound
of 12 are available, it is increased to 13. For this cycle
time the current partial solution can be completed by S,
= {3, 4} and 5; = {5, 6, 7}. Only in node 2 another load
(of station 1) feasible for cycle time 12 is available.

Table 5

Latest stations in node 1

; i 2 3 6 7 8

Lj(c) 2 3 2 3 3 3 4 4

Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educacion Nacional NIT:
ez B 891.480.035-9 - Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206
www.utp.edu.co - Pereira (Risaralda) Colombia

CBriil i cati on

http://www.utp.edu.co/

R Klein, A. Scholl/European Journal of Operational Research 91 (1996) 367-385 381

6. Computational results and

In this section, we report on results of computational
experiments comparing existing algorithms and several
versions of SALOME-2.

6.1. Data sets and experimental conditions

In the literature, no benchmark data sets are available
for SALBP-2. We collected two data sets with 128 and
174 instances, respectively, which are based on
problems (precedence graphs) described in the
SALBP-1 literature. The data sets contain 9 and 8
different problems with 25 to 297 tasks. For each
problem a range of station numbers is used to construct
several instances (defined by a precedence graph and a
number m of stations). The complete problem
definitions and solutions are given in Scholl (1993).

All tests are performed on an IBM-compatible
personal computer with 80486 DX2-66 central
processing unit. Every tested algorithm is coded by
means of Borland's Pascal 7.0 and is applied to each of
the 302 problem instances of both data sets with a time
limit of 500 CPU seconds. If the time limit is reached
{time out for short) without proving the current
incumbent solution to be optimal, only a heuristic
solution is provided. Then, the obtained solution is
characterized by the current global lower bound LB and
the current upper bound UB. The quality of this solution
can be measured by the relative deviations

UB
devUB := 100%
Table 6
Comparison of search methods
LBM BS
opt 150 126 15.95
fail 152 24.17 3‘2:6
av.dev UB 99.96 264 i
max.dev UB -0.22 '
av.dev LB 264.06 140
av.cpu 327.10
141
0 99.86
-0.40
1152 281.50
-0.40
282.50

150

LB
devLB —

100%
of the upper and the lower bound from the
optimum cycle time c*, respectively. If ¢* s
presently not known, the best available lower bound
value is used for computing deviations.

The procedures are compared with respect to the
following measures (based on 302 instances):

opt. : Number of instances for which an
optimal solution is found and proven.
fail : Number of instances for which the

initial feasible solution is not improved.
av.dev UB : Average relative deviation of UB

from optimality in %. max.dev UB:
Maximum relative deviation of UB

from optimality in %. av.dev LB :
Average relative deviation of LB

from optimality in %. av.cpu
Average execution time in seconds.

6.2. Comparing several SALBP-1 based search methods

In Section 3.1, different general search methods
which determine the minimal cycle time by solving
SALBP-F instances for several trial cycle times are
described. We report on a comparative evaluation of the
Lower Bound Method (LBM), the Binary Search (BS),
the Fibonacci and Binary Search (FBS) and the Binary
Search with Pre-specified Entry Point (EBS).

As initial values for thé boundaries of the search
interval [LB, UB], we take the lower bound

FBS EBS

382 R. Klein, A. Scholl / European Journal of Operational Research 91 (1996) 367-385

LB1 and the upper bound which is heuristically
determined as described in Section 2 (Hackman et al.,
1989, use a theoretical value of UB). Two different
transformations are examined by considering the tasks
in the original and the reverse ordering of their numbers,
respectively. Since the initial UB is often far away from
the optimal cycle time, we exclude the upper bound
method from the test.

Within each of the four tested search methods, a
version of FABLE which is modified to solve feasibility
problems (SALBP-F) is applied. The results are
summarized in Table 6.

Table 6 shows that LBM and FBS solve more
instances to optimality than the other procedures
because the lower bound cycle times LB1 are optimal
for many problem instances. In these cases, LBM and
FBS check only one trial cycle time while the other
methods need more iterations. On the other hand, LBM
fails to find a feasible solution at all in case of exceeding
the time limit which occurs for more than half of the
instances. Then, only the initial feasible solution with a
worst case deviation of almost 100% is available. The
same problem appears with FBS when it runs out of
time in the Fibonacci Search phase. EBS fails to
improve the initial solution if the first trial cycle time is
too small or solving the respective SALBP-F instance
takes too much time. Only BS finds feasible solutions
for all instances. Consequently, it shows the best aver-
age and maximum deviations of UB from optimality.
The worse values of the other methods result from the
instances for which they are not able to improve the
initial solutions. With respect to the average
computation times (including 500 seconds in case of

Table 7
Comparison of different planning directions

UniFor UniBack

opt. 164 184
fail 1 0
av.dev UB 1.09 0.90
max.devUB 10.05 11.73
av.dev LB -0.33 -0.21

av.cpu 242.74 208.71

time out) LBM and
FBS are better than the two other search methods be-
cause they find more optimal solutions and need fewer
iterations for the respective instances. Furthermore,
they result in better lower bound deviations.

The results can be summarized as follows. Only BS
reaches acceptable solutions for all instances. While
performing well for many instances, the search
methods LBM and FBS fail to improve the initial
feasible solution for harder problems. The choice of the
particular first trial cycle time by EBS does not seem to
be advantageous because this cycle time is not
appropriate in some cases.

6.3. Comparing unidirectional and bidirectional versions of
SALOME-2

In this section, we report on a comparison of the
different versions UniFor, UniBack, BiFor, BiBack,
and BiFlex of SALOME-2. The bounds LB and UB are
determined as described in Section 6.2. In Table 7, we
present a summary of the results.

The algorithm UniFor is outperformed by its mirror
image UniBack. This indicates that the planning
direction plays an important role with respect to the
efficiency of the algorithm. The static bidirectional
algorithms BiFor and BiBack are not able to improve
the results of their unidirectional counterparts. On the
contrary, they perform worse for some instances. The
best results with respect to all criteria are obtained by
BiFlex. Its flexible strategy is able to obtain solutions at
least as good as the best of the four static algorithms for
260 of the 302 instances.

BiFor BiBack BiFlex
ni m 217
1 2 0
1.24 151 0.56
53.22 53.22 10.03
-0.24 -0.19 -0.12
228.99 210.92 157.03

R. Klein, A. Scholl/European Journal of Operational Research 91 (1996) 367-385 383

6.4. Comparing SALOME-2 with existing procedures

We compare the flexible bidirectional version BiFlex
of SALOME-2 (shown to be effective in Section 6.3)
with four existing procedures. Three of them use
modified SALBP-1 algorithms in the framework of
Binary Search which appeared to be the best search
method (cf. Section 6.2). The chosen SALBP-1 solvers
are FABLE, EUREKA, and SALOME-1 (cf. Section
3.1). Furthermore, a version of the taskoriented branch
and bound procedure of Scholl (1994) which directly
solves SALBP-2 is included in the test (TBB for short,
cf. Section 3.2). FABLE is applied as described in
Section 6.2. Since EUREKA contains several parts, the
remaining computation time is equally split up between
the forward and the backward procedure in each
iteration of the search process. If the time limit is
reached only the heuristic procedure is applied for all
remaining trial cycle times. This leads to total
computation times exceeding the prespecified time limit
of 500 seconds by about 7 seconds on average.

The algorithms SALOME-1 and SALOME-2 reflect
the relationship between SALBP-1 and SALBP-2.
While SALOME-2 applies a Local Lower Bound
Method with respect to the cycle time, SALOME-1 uses
a very similar technique for the number of stations. In
both cases, SALBP-F instances arise for temporarily
fixed local lower bounds on the cycle time and the
number of stations, respectively. Because of this close
relationship between the two methods, they contain
common components like the procedure for
enumerating station loads, most of the dominance and
reduction rules and the flexible bidirectional branching
strategy. The main differences are that SALOME-2
avoids repeated enumeration of parts of the tree and that
it considers only possible cycle times. SALOME-1 is

Table 8
Comparison of different algorithms
FABLE EUREKA
#opt. av.dev 141 215
UB max.dev 1.25 0.53
UB av.dev 11.84 15.25
LB av.cpu -0.40 -0.11
282.50 164.43
178 201
0.62 1.30
11.86 17.86
-0.55 -0.21
293.34 188.36

SALOME-1 TBB

only used for solving feasibility problems within a Bi-
nary Search, i.e., no local bound enlargement takes
place.

The algorithm TBB originally contains a heuristic
procedure with a tabu search meta strategy to obtain
initial feasible solutions. In order to have equal start
conditions, the heuristic is not used, and all algorithms
start with the same lower and upper bounds as in the
previous sections. Scholl (1994) describes a number of
priority rules for selecting the next
task-station-combination to be fixed in a node of the
enumeration tree. Among these, one similar to the
bidirectional strategy of SALOME-2 is chosen because
it clearly outperforms the other rules.

The five algorithms are applied to the combined data
set with 302 instances in the same way as described in
Section 6.2. The results are summarized in Table 8 (cf.
Tables 6 and 7 for the results of FABLE (column BS)
and SALOME-2 (column BiFlex), respectively).

The algorithms SALOME-1 (with Binary Search)
and SALOME-2 show quite similar results because of
their close relationship discussed above. Only with
respect to the maximal deviation SALOME-2 has a
significantly smaller value. Both methods clearly
outperform the other procedures.

TBB does only well concerning the number of
optimal solutions and the lower bound deviations. The
large average and maximum deviations of UB from
optimality are due to the enumeration scheme which
orientates on improving the current UB instead of trying
to hold a current lower bound like the SALOME
procedures. Furthermore, it assigns only a single task in
each branching step which requires the application of
expen-

SALOME-2

217
0.56
10.03
-0.12

157.03

384 R. Klein, A. Scholl / European Journal of Operational Research 91 (1996) 367-385

sive logical tests in order to avoid constructing badly
utilized station loads.

The results of the SALBP-1 procedures FABLE,
EUREKA, and SALOME-1 in the framework of Binary
Search confirm the findings of Scholl and Klein (1994)
who compared these algorithms for several data sets of
SALBP-1 instances. SALOME-1 significantly
outperforms the other procedures which is mainly due
to its flexible bidirectional branching strategy and its
sophisticated bounding and dominance rules. EU-
REKA's superiority to FABLE with respect to the
number of optimal solutions and the upper bound
deviations relies on the use of both planning directions
as well as the heuristic. The better lower bound
deviations and the shorter average computation times of
FABLE can be explained by its bounding and
dominance rules which are not included in EUREKA.

7. Summary and conclusions

In this paper, we present solution procedures for
SALBP-2 which consists of balancing the work on an
assembly line such that for a given number of stations
the cycle time is maximized. For this problem type only
few methods have been proposed in literature so far.
Almost all approaches apply procedures for the strongly
related SALBP-1, which is to minimize the number of
stations for a given production rate, in the framework of
a general search method. Effective solvers for this
problem type are the well-known algorithms FABLE
and EUREKA as well as a combination of these
methods, called SALOME-1. The latter has been used
to develop a procedure, named SA-LOME-2, which
directly solves SALBP-2. Computational experiments
show that this new approach clearly outperforms former
methods. To our knowledge, this is the first time that
SALBP-2 procedures are comprehensively
investigated. Due to the lack of appropriate data sets, a
new one with 302 instances has been constructed.

SALBP-2 as well as SALBP-1 are restricted
versions of the general simple assembly line balancing
problem (SALBP-G) which is to find a combination of
the cycle time ¢ and the number

References

m of stations minimizing the sum of idle times. This
problem has a nonlinear objective function depending
on ¢ and m. Two possible solution approaches consist
of iteratively solving SALBP-1 instances for several
values of ¢, or SALBP-2 instances for several values of
m, respectively. Hence, further research may focus on
examining whether SALBP-1 or SALBP-2 based
procedures are more suitable for solving SALBP-G
efficiently.

Acknowledgments

We wish to thank Professor Thomas Hoffmann and
Professor Roger Johnson for providing us with copies
of their Fortran codes of EUREKA and FABLE,
respectively.

Baybars, 1. (1986), "*A survey of exact algorithms for the simple
assembly line balancing problem™, Management Science 32,
909-932.

Charlton, J.M., and Death, C.C. (1969), ""A general method for
machine scheduling®, International Journal of Production
Research 7, 207-217.

Coffman, E.G., Garey, M.R., and Johnson, D.S. (1978), "An
application of bin-packing to multiprocessor scheduling™,
SIAM Journal on Computing 7, 1-17.

Domschke, W., Scholl, A., and VoB, S. (1993),
Produktions-planung - Ablauforganisatorische Aspekte,
Springer-Verlag, Berlin.

Hackman, S.T., Magazine, M.J., and Wee, T.S. (1989), "Fast,
effective algorithms for simple assembly line balancing
problems", Operations Research 37, 916-924.

Held, M., Karp, R.M., and Shareshian, R. (1963), "'Assembly line
balancing - Dynamic programming with precedence
constraints, Operations Research 11, 442-459.

Hoffmann, T.R. (1963), "Assembly line balancing with a
precedence matrix'*, Management Science 9, 551-562.

Hoffmann, T.R. (1992), "EUREKA: A hybrid system for
assembly line balancing®', Management Science 38, 39-47.

Jackson, J.R. (1956), "A computing procedure for a line
balancing problem™, Management Science 2, 261-271.

Johnson, R.V. (1988), "*Optimally balancing large assembly lines
with '"FABLE" **, Management Science 34, 240-253.

Lawler, E.L. (1991), "Computing shortest paths in networks
derived from recurrence relations", Annals of Operations
Research 33, 363-377.

Mansoor, E.M. (1964), "Assembly line balancing - An im-
provement on the ranked positional weight technique",
Journal of Industrial Engineering 15, 73-77; 322-323.

R. Klein, A. Scholl / European Journal of Operational Research 91 <1996) 367-385 385

McNaughton, R. (1959), "Scheduling with deadlines and loss
functions", Management Science 6, 1-12.

Saltzman, M.J., and Baybars, 1. (1987), "A two-process implicit
enumeration algorithm for the simple assembly line balancing
problem”, European Journal of Operational Research 32,
118-129.

Scholl, A. (1993), "Data of assembly line balancing problems",
Schriften zur Quantitativen Betriebswirtschaftslehre 16/93, TH
Darmstadt.

Scholl, A. (1994), "Ein B & B-Verfahren zur Abstimmung von
FlieBbé&ndern bei gegebener Stationsanzahl", in: H. Dyckhoff, U.
Derigs, M. Salomon and H.C. Tijms (eds.), Operations Research
Proceedings 1993, Springer-Verlag, Berlin, 175-181.

Scholl, A. (1995), Balancing and Sequencing of Assembly Lines,
Physica, Heidelberg.

Scholl, A., and Klein, R. (1994), "Combining the power of FABLE
and EUREKA for assembly line balancing - A bidirectional
branch and bound procedure", Schriften zur

Quantitativen Betriebswirtschaftslehre 7/94, TH Darmstadt.

Scholl, A., and VoB, S. (1994), "Simple assembly line balancing -
Heuristic ~ approaches”, Schriften ~ zur Quantitativen
Betriebswirtschaftslehre 2/94, TH Darmstadt.

Schrége, L., and Baker, K.R. (1978), "Dynamic programming
solution of sequencing problems with precedence constraints",
Operations Research 26, 444-449.

Talbot, F.B., and Patterson, J.H. (1984), "An integer programming
algorithm with network cuts for solving the assembly line
balancing problem", Management Science 30, 85-99.

Talbot, F.B., Patterson, J.H., and Gehrlein, W.V. (1986), "A
comparative evaluation of heuristic line balancing techniques”,
Management Science 32, 430-454.

Wee, T.S., and Magazine, M.J. (1981), "An efficient branch and
bound algorithm for an assembly line balancing problem - Part I1:
Maximize the production rate”, Working Paper No. 151,
University of Waterloo, Waterloo, Ont.

