

ELSEVIER

EUROPEAN
JOURNAL OF

OPERATIONAL
RESEARCH

European Journal of Operational Research 91 (1996) 367-385 -■

Theory and Methodology

Maximizing the production rate in simple assembly line balancing

- A branch and bound procedure

Robert Klein, Armin Scholl *

Institut für Betriebswirtschaftslehre, Technische Hochschule Darmstadt, Hochschulstraße 1, D-64 289 Darmstadt, Germany

Received August 1994; revised January 1995

Abstract

In this paper, a branch and bound procedure for the Simple Assembly Line Balancing Problem Type 2 (SALBP-2)
is described. This NP-hard problem consists of assigning tasks to a given number of work stations of a paced assembly
line so that the production rate is maximized. Besides, possible precedence constraints between the tasks have to be
considered. Existing solution procedures for SALBP-2 are mainly based on repeatedly solving instances of the closely
related SALBP-1, which is to minimize the number of stations for a given production rate. The proposed branch and
bound procedure directly solves SALBP-2 by using a new enumeration technique, the Local Lower Bound Method,
which is complemented by a number of bounding and dominance rules. Computational results indicate that the new
procedure is very efficient.

Keywords: Scheduling; Assembly line balancing; Branch and bound

1. Introduction

We consider the Type 2 of the Simple Assembly

Line Balancing Problem (SALBP-2) which arises in the

mass production of a single product. The assembly of

each product unit requires the execution of n tasks

(indivisible elements of work) with fixed operation

times t¡ (j = 1,..., n). Precedence constraints partially

specify the order in which the tasks have to be

performed. They can be represented by an acyclic

precedence graph which contains nodes for all tasks

with operation times as node weights and arcs (i , j) if

task i has to be completed before task ; can be started. A

paced assembly line consists of m (work) stations,

connected by a conveyor belt onto which product units

are launched at a constant rate p. Due to the uniform

movement of the belt, the production rate is equal to p.

The constant time interval l / p between the arrival of

two consecutive units in all stations is called cycle time

c. Each station k = l , . . . , m has repeatedly to perform a

subset Sk of the tasks on consecutive units. Such a set Sk

is called station load of station k , and the sum of

operation times of the contained tasks is referred to as

station time t (S k) . Since all tasks have to be performed

completely, the cycle time must not be smaller than the

maximum of all station times.

Using these assumptions, SALBP-2 is to find a

partition of the set of all tasks into disjoint sta-

0377-2217/96/515.00 © 1996 Elsevier Science B.V. All rights reserved SSDI

0377-2217(95)00047-X

* Corresponding author.

368 R. Klein, A. Scholl/ European Journal of Operational Research 91 (1996) 367-385

tion loads S k with k = \ ,2 , . . . ,m. For each arc (i, of the

precedence graph the relation h < k must hold if i e S h

and j eSt, The objective is to maximize the production

rate, or equivalently, to minimize the cycle time which

is determined by the maximal station time.

Remark: For ease of presentation we assume that tasks

are numbered according to a topological ordering, i.e. i

< j for all arcs (/, /). As objective we consider the

minimization of the cycle time.

SALBP-2 is usually present when changes in the

production process of a product take place. For

example, operation times may be reduced by using

alternative processing techniques. In this case, the

number of stations of the line may remain fixed.

We consider an example with 10 tasks and the

precedence graph of Fig. 1 (node weights indicate

operation times). An optimal solution with m = 5

stations is the partition 5X = {3, 4}, S 2 = {1, 5}, S3 = {2,

7}, 54 = {6, 8}, S 5 = {9, 10} with the cycle time c = 13,

which is determined by t (S s) .

The sequel of the paper is organized as follows. In

Section 2, we describe bound arguments for SALBP-2

which may be exploited by solution procedures. Section

3 surveys existing solution approaches. Most of these

procedures rely on the close relationship of SALBP-2 to

SALBP-1 which consists of minimizing the number of

work stations for a given cycle time. Section 4

introduces SALOME-2, a new branch and bound

algorithm, which is extended to a flexible bidirectional

approach in Section 5. The results of computational

experiments comparing existing as well as new

procedures are summarized in Section 6. Finally,

Section 7 contains conclusions which can be drawn

from this research.

2. Bounds for SALBP-2

Solving SALBP-2 includes two main tasks which

have to be accomplished simultaneously. First, a

minimal cycle time has to be determined. Second, an

assignment of all tasks to the m work stations with

loads observing the precedence constraints and station

times not exceeding the minimal cycle time has to be

found. Such an assignment is called feasible for the

respective cycle

Table 1

Definition of terms

number of tasks

operation time (task time) of task / — 1,..., n U j is assumed to be positive and integral)

maximum task time; fmin: minimum task time sum of task times

set of tasks which immediately precede (follow, succeed) task in the precedence graph set

of all tasks which precede (follow, succeed) task j in the precedence graph number of

stations

station load, set of tasks assigned to station k = 1 , 2 , . . .

station time of station k (= £;- e s tj)

(realized) cycle time (= max{t(Sk) I k = 1,..., m))

lower (upper) bound on cycle time

idle time in station k (= c - t(Sk))

total available idle time for a realized cycle time c (- m c — fsum)

lower bound on the station time to realize cycle time c (= max{0, c — Totl(c)})

smallest integer >x ; [x J: largest integer

== \(tj + T.hf=P-th)/c\. earliest station of task j for cycle time c

•= m + 1 - \Uj + e f th)/c\. latest station of task for cycle time c

= \Ej(c), Ly(c)]: station interval of task ; for cycle time c

Fig. 1. Precedence graph.

R. Klein, A. Scholl /European Journal of Operational Research 91 (1996) 367-385 369

time. Hence, the problem can be solved by itera-tively

checking for several trial cycle times whether or not a

feasible assignment of all tasks to m stations exists (cf.

Section 3.1 for such solution procedures). This approach

requires computing lower and upper bounds on the cycle

time. Furthermore, it is possible to reduce the number of

station loads which have to be considered for a certain

trial cycle time by exploiting the problem structure of

SALBP-2. The used terms are defined in Table 1.

Lower bounds for SALBP-2 can be obtained by

utilizing relationships to other combinatorial

optimization problems. By omitting the precedence

constraints SALBP-2 passes into the problem of

scheduling jobs (= tasks) on identical parallel machines

(= stations) with the objective of minimizing the

makespan (= cycle time). A simple lower bound LB1

for this problem (and for SALBP-2 as well) is obtained

by allowing job preemption, i.e., processing of a job

may be interrupted and continued on another machine.

Since jobs cannot be processed on two machines simul-

taneously, the bound is given by

LB1 « max{fmax, \ t w a m /m] }.

For our example,

LB1 = max{9, [50/51) =
10

-

Another lower bound for the parallel machine

problem related to SALBP-2 is obtained as follows. For

ease of presentation, we assume that the tasks are

numbered according to decreasing operation times, i.e.,

t j>t) + l for ; = l , . . . , n - 1.

Consider the m + 1 largest tasks 1,..., m + 1. A lower

bound on the cycle time for this reduced problem is tm +

tm + x , the sum of the two smallest task times, because at

least one station contains two tasks. In general, a lower

bound LB2 is obtained by

n - 1

LB2.= max^ £ f*.m+1_(I * = 1,.

, 1= 0

For our example, we get LB2 = 5 + 5 = 10 because the

six largest tasks are 9, 1, 2, 3, 4, and 6 with operation

times 9, 6, 6, 5, 5, and 5.

A main characteristic of SALBP-2 is the existence of

precedence constraints. Though they complicate the

problem, they provide information for additional

problem reduction. They restrict the possible

assignment of each task to a station interval which is

bounded by an earliest and a latest station, respectively

(cf. Talbot and Patterson, 1984). Depending on a trial

cycle time c, values for the earliest and latest stations

can be derived by

(',■ + E O/c
\ hep,' I

(earliest station for task / = !,...,«), and

Lj(c) ■■= m + 1

(latest station for task j = 1,..., n).

Formula (la) takes into consideration that task ; must

not start before all preceding tasks have been finished. A

lower bound on the number of stations required for task

; and the tasks of the predecessor set P* is obtained by

dividing the corresponding sum of task times by the trial

cycle time c. Equivalently to (la), formula (lb) considers

the task times of task ; and all its successors.

Table 2

Earliest and latest stations for m = 5 and c = 11

;

m

(la)

(lb) A

1 2 3 4 5 6 7 8 9 10

f . g 6 5 £ 4 5 4 2 9 4 ~

Ey(ll) 1 2 1 1 2 3 2 4 5 5

¿,(11) 2 3 2 3 3 4 4 4 4 5

370 R. Klein, A. Scholl / European Journal of Operational Research 91 (1996) 367-385

If the trial cycle time c is to be realized, each task j = 1,...,

n must be assigned to a station in its station interval

S l j (c) = [E j (c) , L j (c) \ .

Tasks whose station intervals enclose a certain station k

are potentially assignable to k .

If we assume c = 11 to be the trial cycle time, we get

the values of Table 2 for our example of Section 1. Since

the station interval SI9(11) is empty for task 9, i.e., it

cannot be assigned to any station, no feasible solution can

exist for the trial cycle time 11. Note that due to £,(c)

<£y(c - 1) and L j (c) > Ly(c - 1) smaller cycle times

cannot be feasible, too. Hence, the lower bound can be

increased to 12 for the example.

In general, a lower bound LB3 for SALBP-2 can be

defined as

LB3

— min{c I E j (c) < L,(c) for all j = 1,...,n } .

For the trial cycle time c = 12, the values of Table 3

result.

A simple upper bound on the cycle time is

UB := max{fmax, 2 - [t s u m / m \)

(cf. Coffman et al., 1978, as well as Hackman et al.,

1989). If LB1 > fmax, UB can be improved to LB1 + fmax -

1 due to the following reflections (cf. Scholl, 1995). It is

always possible to determine a preemptive solution with

cycle time LB1 in which each task is either processed by

one station completely or is split up between two

consecutive stations k and k + 1 (cf. Mc-Naughton,

1959). This theoretical upper bound implies the idea for a

simple heuristic. Station 1 * is filled up by successively

assigning tasks in the order of the topological task

numbering until the station time is equal to or just

exceeds the cycle time LB1. The same procedure is

repeated for the stations 2, 3,..., m. For our example, the

heuristic determines a solution with a realized cycle

time of 13.

In the following, we outline some possibilities to

utilize the bound arguments for reducing the number of

station loads, which have to be examined in order to

find a feasible assignment for a certain trial cycle time.

Since only trial cycle times c > LB1 are considered,

the total time m ■ c available for processing a product

unit equals or exceeds the sum of operation times tsum.

Hence, a total idle time

Totl(c) :=m- c -fsum

cannot be used for work, i.e., one or more stations are

not completely utilized. In such stations k , an idle time

I k (c) ~ C - t (S k)

occurs. Each of these idle times I k (c) for all k — 1,...,

m is bounded by Totl(c). Therefore, a lower bound on

the station times of all stations is

SL(c) := max{0, c - Totl(c)}.

Station intervals with only one element can be used

to reduce SALBP-2 instances by prefixing because each

task with £y(c) = L,(c) must be assigned (prefixed) to

station £;(c) in order to find a feasible solution with

cycle time c. In our example, the tasks 8, 9, and 10 are

prefixed to the stations 4 and 5, respectively, for the

trial cycle time c = 12 (cf. Table 3).

Furthermore, only maximal station loads have to be

considered. A station load is maximal with respect to a

cycle time c if no not yet assigned task can be added to

the respective station neither exceeding the cycle time

nor violating the

Table 3

Earliest and latest stations for m = 5 and c = 12

j __
1 2 3 4 5 6 7 8 9 10

E/12) I I 1 1 2 3 2 4 4 5~

L/12) 2 3 3 3 4 4 4 4 4 5

R. Klein, A. Scholl/European Journal of Operational Research 91 (1996) 367-385 371

precedence constraints. In the example, the station

loads S4 = {8, 9} and S5 = {10} obtained by prefixing

are maximal with respect to c = 12, because none of the

tasks 5, 6, and 7, which are potentially assignable to

station 4, can be added to the load S4. Task 10 is the

only potentially assignable one for station 5. Hence,

idle times /4(12) = 1 and 75(12) = 8 occur in stations 4

and 5.

3. Existing exact solution approaches

In this section, we provide a short summary of

solution procedures for SALBP-2 presented in the

literature so far.

3.1. Approaches using SALBP-1 procedures

Most approaches are based on the close relationship

of SALBP-2 to SALBP-1 (minimize m for a given c).

Both problem types can be reduced to a common

feasibility problem, named SALBP-F. This problem is

to find a feasible task assignment to m stations for a

given cycle time c or to ascertain that none exists.

Therefore, SALBP-2 can be solved by successively

considering instances of SALBP-F with m stations and

various trial cycle times of an interval [LB, UB] (cf.

Section 2). Solutions for SALBP-F are obtained by

using modified procedures for SALBP-1.

Procedures for SALBP-1

Since most research in simple assembly line

balancing focussed on SALBP-1, a large number of

exact solution procedures have been proposed (cf.

Baybars, 1986, Domschke et al., 1993, as well as Scholl,

1995, for surveys and comparisons). For heuristic

procedures see Talbot et al. (1986) as well as Scholl and

VoB (1994).

Most procedures exactly solving SALBP-1 are based

on the branch and bound principle as well as on dynamic

programming. In the last years, only branch and bound

procedures, clearly outperforming the existing dynamic

programming approaches, have been developed.

Among these, the algorithms FABLE of Johnson

(1988), EUREKA of Hoffmann (1992) and SALOME-1

of

Scholl and Klein (1994) seem to be most effective.

Further branch and bound procedures stem from Talbot

and Patterson (1984), Saltzman and Baybars (1987) as

well as Hackman et al. (1989). Some of the dynamic

programming procedures are those of Jackson (1956),

Held et al. (1963), and Schräge and Baker (1978).

FABLE enumerates solutions by successively

assigning tasks to the stations 1, 2,... according to a

priority list. The enumeration is organized as a

depth-first-search. Each station is maximally loaded

before a new one is opened. Various dominance and

bounding criteria are used for reducing the size of the

enumeration tree.

EUREKA starts with a simple lower bound SB = f

fsum/cl on the number of stations and iter-atively solves

instances of SALBP-F. If a solution with SB stations is

found, the algorithm stops with the optimal solution of

SALBP-1. Otherwise, SB is increased by one and the

procedure is started once more, i.e., a new enumeration

tree is built. Enumeration is done by systematically gen-

erating station loads (instead of assigning single tasks)

in form of a depth-first-search. In a first phase of the

algorithm, stations are considered in order of increasing

numbers (forward direction), a second phase builds

station loads in backward direction by reversing the

precedence graph. Each phase is executed for a

prespecified time interval with phase 2 starting after

phase 1 and using the actual lower bound SB. If both

phases fail to find an optimal solution, the heuristic of

Hoffmann (1963) is applied which may result in a

suboptimal solution.

SALOME-1 integrates and improves the most

promising components of FABLE and EUREKA.

Furthermore, some additional bounding and dominance

rules as well as a new bidirectional branching strategy

are included. This approach, which clearly outperforms

FABLE and EUREKA, is adapted to solving SALBP-2

in Sections 4 and 5 of this paper.

Each of the algorithms described above can easily be

modified in order to solve SALBP-F with m and c fixed.

This is done by starting the procedures with the lower

bound m and fathoming nodes whenever the lower

bound has to be increased.

372

Search methods for SALBP-2

With respect to the sequence in which trial cycle

times of the interval [LB, UB] are considered the

following general search procedures are distinguished

(cf., e.g., Mansoor, 1964, Wee and Magazine, 1981, as

well as Hackman et al., 1989).

• Lower Bound Method: Starting with a lower

bound LB, the cycle time is successively increased by

one until the respective SALBP-F instance is feasible.

• Upper Bound Method: First, an upper bound UB

on the cycle time is determined by a heuristic

procedure, or a theoretical value is computed (cf.

Section 2.1). Starting with UB, the cycle time c is

successively decreased by one until SALBP-F is

infeasible for c - 1 or c is equal to a lower bound. In

each iteration, the maximal station time of the found

feasible solution is used as new value of c.

• Binary Search: The search interval [LB, UB] is

successively subdivided into two sub-intervals by

choosing the mean element

c = [(LB + UB)/2J.

If SALBP-F is feasible for c, the upper bound UB is set

to the maximum station time in the corresponding

solution. Otherwise, LB is set to c +1. The search stops

with an optimum cycle time UB when UB = LB.

• Fibonacci Binary Search: The method contains

two steps. First, a Fibonacci Search is performed

following the basic idea of the Lower Bound Method,

i.e., the trial cycle times are LB, LB + F(l), LB + F(l) +

F(2),... using the Fibonacci numbers F(l) ■= 1, F(2) ~ 2,

and

F (i) ==F(J- 1) + F(/ -2) for i > 3 .

If a SALBP-F instance with a trial cycle time c is not

feasible, LB is set to c + 1. When a feasible cycle time c

is obtained, the Binary Search is applied to the

remaining interval [LB, c] ,

• Binary Search with Prespecified Entry Point: The

method differs from standard Binary Search only in

determining the first trial cycle time. Based on the

observation that for many problem instances the cycle

times close to LB are more likely to be optimal than

larger values, the first trial cycle time is determined by

the maximal value

of c for which m = ff s u m /c l holds. The Binary Search

is applied to the remaining search interval. In our

example, the first trial cycle time is c = 12.

3.2. Direct procedures for SALBP-2

In contrary to SALBP-1, only few exact methods

directly solving SALBP-2 are available.

Charlton and Death (1969) describe a general

branch and bound procedure which is also able to solve

flow and job shop problems with minor changes and

does not sufficiently utilize the particular structure of

assembly line balancing problems.

A specialized branch and bound procedure for

SALBP-2 has been developed by Scholl (1994). I t

contains a heuristic procedure with a tabu search

strategy for determining good initial upper bounds.

Branching is performed as a depth-first-search by

assigning a single task to a station in each step. The

choice of the task-station-combinations is controlled by

priority rules. In contrast to most other procedures for

assembly line balancing problems, stations are not

considered in a fixed order. The algorithm contains

different ways of computing lower bounds exploiting

the structural properties of SALBP-2 described in

Section 2. The most effective bounding method is

based on minimal idle times in every station which can

be determined by solving particular knapsack

problems. Furthermore, the algorithm makes intensive

use of dominance and reduction rules.

4. SALOME for SALBP-2

We present a new branch and bound approach

which directly solves SALBP-2. It is called

SA-LOME-2 (Simple Assembly Line Balancing Opti-

mization Method for Type 2).

4.1. Analysis of search methods

In order to examine the performance of the search

methods presented in Section 3.1, the Lower Bound

Method is applied to our example (cf. Fig. 2). The

SALBP-F instances are solved by

R. Klein, A. Scholl /European Journal of Operational Research 91 (1996) 367-385

R. Klein, A. Scholl / European Journal of Operational Research 91 (1996) 367-385 373

an enumeration procedure similar to that of EUREKA

which systematically builds maximal loads. We start

with the trivial lower bound LB1 = 10. Since Totl(lO) =

0, only station loads without idle time are feasible for

SALBP-F with c = 10. Hence, only one station load is

possible in the first three stations, respectively. The

hatched node is fathomed because no load without idle

time is available for station 4. For c = 11 the total idle

time is 5 and the station times must be in the interval

[6,11]. In the first branch of the respective tree, no idle

time occurs until the station load S3 = {5, 6} with idle

time 73(11) = 2 is built. Hence, the remaining total idle

time for the reduced problem with stations 4 and 5 is

reduced to 3. Now, only loads with station times not

smaller than 8 avoid exceeding the total idle time. Since

only the maximal load 54 = {6, 8} with station time 7

exists for station 4, the respective hatched node is

fathomed. The other hatched nodes are fathomed

accordingly. After examining an enlarged tree for c = 12

without success, a feasible (= optimal) solution is found

in the first branch of the tree for c = 13.

The example reveals some disadvantages of

SALBP-1 based search methods:

• They do not use results of computations

performed for previously considered trial cycle times

(SALBP-F instances). Hence, large portions of

enumeration trees may repeatedly be constructed. In

our example, four trees containing common parts

(boldfaced in Fig. 2) have to be built by the Lower

Bound Method.

• Furthermore, these methods rely on the as-

sumption that all values of the search interval are

potential cycle times. This may lead to unnecessary

iterations if no combination of tasks with a station time

equal to a trial cycle time exists. For example, imagine

the trivial case of a problem with operation times which

are multiples of 100. Then, only multiples of 100 are

candidates for the optimum cycle time.

• The practical application of solution procedures is

often restricted by limited computation time. In this

case, search methods, which examine infeasible

SALBP-F instances first, may not provide a feasible

solution at all.

4.2. Outline of the algorithm

In order to avoid the disadvantages stated above, a

procedure directly solving SALBP-2 is developed. It

contains a new enumeration tech-

for the example problem.

c=10:

Fig. 2. Lower bound

UB=1
3

Universidad
Tecnológica^

. Scholl / European Journal

de Pereira
the Local Lower Bound Method,

which exploits the observation that the relative differ-

ence between the minimal cycle time and an initial

lower bound is very small for a large number of

problem instances.

Branching is performed as a depth-first-search by

successively building loads for the stations 1,..., m.

Resulting subproblems (nodes of the enumeration tree)

are reduced problems of the same type with less stations

and a reduced precedence graph. The method starts

with a lower bound LB on the cycle time and proceeds

like a Lower Bound Method as long as possible in order

to find a feasible solution with cycle time LB. Hence, in

each node (which represents a partial solution of

already built station loads) only such maximal station

loads, whose idle times do not exceed the remaining

total idle time (with respect to LB), are branched. After

examining all loads feasible for the trial cycle time LB

without success (no feasible completion of the partial soluof

Operational Research 91 (1996) 367-385

tion with cycle time LB exists), the lower bound of the

node is locally increased. Note that the Lower Bound

Method fathoms this node. In order to avoid trying

cycle times impossible for the reduced problem, the

new value LB' of the local lower bound is determined

as the smallest one for which at least one not yet

considered station load is feasible. For LB' only those

maximal loads which have not been feasible for former

bound values are examined. Whenever loads for all

stations but station m have been constructed, a feasible

solution is obtained by assigning the remaining tasks to

station m. The cycle time of the best known feasible

solution serves as upper bound UB. A node is fathomed

when its local lower bound exceeds the value of UB.

The outlined enumeration procedure is illustrated by

means of our example. Fig. 3 shows the resulting

enumeration tree, the nodes are numbered in order of

their generation. The current local lower bounds are

given as node weights

Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educación Nacional NIT:

891.480.035-9 - Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206

www.utp.edu.co - Pereira (Risaralda) Colombia

http://www.utp.edu.co/

Universidad

. Scholl / European Journal

de Pereira
with the respective remaining

total idle times. Loops mark the increase of a bound. Parts

of the tree which correspond to the same value of the

local lower bound are underlayed with the same pattern.

In our explanation below, we denote the local lower

bound of a node at level k of the tree, which represents a

partial solution with stations l , . . . , k , by LB^.

The procedure starts with the lower bound LB0 = 10 as

well as the total idle time Totl(lO) = 0 and builds the same

station loads as the Lower Bound Method for SALBP-F

with c = 10 (cf. Fig. 2). In node 3, the only maximal load 54

= {6, 8} for station 4 has an idle time 74(10) = 3. Hence, the

partial solution S l = {3, 4}, S 2 = {1, 5}, S3 = {2, 7} cannot

be completed to a feasible solution with cycle time 10. In

contrast to solving a SALBP-F instance, the Local Lower

Bound Method does not fathom the node but increases its

local lower bound LB3 to 13. The cycle times 11 and 12

are not possible in this node. For the cycle time 11 the

first three station loads of the partial solution show idle

times /jOD = /2(11) = 73(11) — 1. Since the only

maximal load S4 = {6, 8} of station 4 would result in the

idle time /4(11) = 4, the cumulated idle time of 7 would

exceed the total idle time TotI(ll) = 5. Due to idle times

/j(12) = /2(12) - 73(12) = 2 and 74(12) = 5, the cycle time

12 with TotI(12) = 10 cannot be realized, too. With the

local lower bound LB3 = 13 a feasible solution is found in

node 5 (UB = 13). Since the nodes 4 and 3 have the local

lower bound value 13, the enumeration traces back to

node 2 with the current local lower bound LB2 = 10. This

local bound must be increased because no further

maximal load of station 3 exists for cycle time 10. Due to

the station load S3 = {2, 6}, the next trial cycle time is LB2 =

11 with remaining total idle time 3. The resulting node 6

is fathomed after increasing its local bound to 13. The

same is true for all other black nodes.

The example shows that the Local Lower Bound

Method avoids repeatedly enumerating same parts of the

tree, the main disadvantage of the Lower Bound Method

(cf. Fig. 2). Furthermore, it provides a feasible solution in

the first branch of the tree. Note that the new enumera-

tion technique builds almost the same tree as the

of Operational Research 91 (1996) 367-385

Procedure Branch(k) begin

if k = m - 1 then

begin

UB := LB*;

fix all not yet assigned tasks to station m and store

solution as current incumbent;

end

else

while LB* < UB do (* outer loop *) begin

SLk(LBfc) := max{0, LBk - TotI(LB*)
k

+ 2>(LB»)};

h = \

find first maximal load Sk+i for station k + l with

r(5t+i) € [SLjt(LBjt), LB*]; while Sk+i exists do

(* inner loop *) begin

LBjt+i := LBt;

Branch(k + 1);

(* recursive call of procedure branch*)
find next maximal load Sk+i for station

k + 1 with t(Sk+i) G [SLt(LBfc), LB*]; end

increase LBt; end;

end;
Fig. 4. Procedure Branch.

Lower Bound Method for c = 12 but generates station

loads in another order according to increasing bounds.

In the following sections, we give a more detailed

description of the enumeration technique of SALOME-2,

the way of adjusting the local lower bounds and the used

dominance rules.

4.3. The enumeration procedure

The algorithm starts with the global lower bound

LB := max{LBl, LB2, LB3}

and the upper bound UB heuristically determined as

described in Section 2.

The enumeration is realized by the procedure 'Branch'

in Fig. 4 which represents a recursive version of a

depth-first-search branch and bound algorithm. The local

lower bound LB0 of the root

Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educación Nacional NIT: 891.480.035-9 -

Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206

www.utp.edu.co - Pereira (Risaralda) Colombia

375

http://www.utp.edu.co/

LB't •=

0,
'sum ~ ^ A - I ' (^ A)

_
 $

if S->0.

Universidad
Tecnologica

dg p^f^j^. Scholl / European Journal of Operator I Research 91 (96) 36^-385

(k = 0) is initialized to the value of the global bound

LB before calling Branch(O). The local lower bounds

LB*+1 of nodes at level k + 1 are initially set to the value

of the bound LB* of the father node at level k ,

respectively. In each node at level k of the enumeration

tree, all possible maximal station loads for station k + 1

are enumerated explicitly or implicitly (cf. the inner

loop of procedure Branch). In order to hold the current

local lower bound LB*, only station loads feasible for

the trial cycle time LB* are chosen for branching.

Equivalently, the station times of those loads must be in

the interval [SL*(LB*), LB*]. The lower bound

SL*(LB*) is determined by the difference of LB* and

the remaining total idle time. The latter results from

reducing the total idle time TotI(LB*) by the idle times

of the already built stations l , . . . , k (cf. Section 2). The

corresponding maximal station loads are systematically

constructed by considering tasks in increasing order of

their numbers. Note that the precedence graph is

assumed to be topologically ordered and that the task

order inside a station is not relevant for optimization.

The enumeration scheme, which is not formulated in

procedure Branch, is identical to that of EUREKA. In

order to find good feasible solutions in the first branches

of the tree, the tasks are renumbered by the renumbering

procedure of FABLE described below.

After examining all station loads feasible for the

current local lower bound LB* it has to be increased to a

value LB'* (see Section 4.4 for details). This leads to an

enlarged interval [SL*(LB'*), LB'*] which makes

additional station loads feasible. Since the new interval

includes the former one [SL*(LB*), LB*] as a

subinterval, only not yet tried maximal loads with

station times in the intervals [SL*(LB'*), SL*(LB*)) or

(LB*, LB'*] are to be considered for the new local lower

bound value LB*. The interval enlargement is

repeatedly done until LB* is no longer smaller than UB

(cf. the outer loop of procedure Branch).

The recursion terminates when loads for m — 1

stations have been built (cf. the first condition in

procedure Branch). In this case, all remaining tasks are

assigned to station m , and a solution with cycle time

LB* results.

The renumberii.g procedure of FABLE which

preserves a topological ordering is as fonVws. Initially,

all tasks are not marked. In each of n iterations i = 1,...,

n , one not marked task with largest operation time and

no or only marked predecessors gets the number i and

is marked. Ties are broken with respect to decreasing

numbers of immediate successors and increasing orig-

inal task numbers. In our example, the renumbering

procedure leads to the original task numbers.

4.4. Adjusting lower bounds

In the enumeration procedure of Section 4.3, the

incrementing of local lower bounds plays an important

role. Due to the assumed integrality of task times, an

obvious increment is 1. In order to avoid checking

impossible trial cycle times and to enlarge the local

lower bound by a minimum value concurrently, station

loads not being part of the current station time interval

are considered. Let 5
+
 denote the smallest station time

of a load S*+1 larger than the cycle time LB* and S ~

denote the largest station time smaller than SL*(LB*) of

a load S* + 1 which is maximal with respect to LB*.

Using these terms, the next possible value LB* of the

local lower bound LB*, is determined by formula (2):

(2)

In the case of S ~ = 0 , no maximal load with a smaller

station time than SL*(LB*) exists. Then only loads with

station times larger or equal S
+

are left for branching

and LB* can be set to S
+
. Otherwise, it has to be

checked whether the realization of a load with time 5
+

or 5" in station k + 1 leads to a lower increment of the

local lower bound. If t (S k + i) = S ~ would be realized,

the new value of LB* follows from applying the bound

LB1 to the reduced problem with stations k + 2,..., m.

In our example, the initial bound of the root node 0 is

LB0 = 10 (cf. Fig. 3). Hence, Totl(lO) = 0

? n - k— l

Universidad

TecnolQgteau Scholl/European Journal

de Pereira
(10) = 10. Only the load S t = {3,

4} is feasible for station 1 because it has station time 10.

After examining the corresponding subtree LB0 has to

be increased. Due to the loads {1} and {1, 3}, the values

of S ~ and S
+
 are 6 and 11, respectively. The new local

lower bound is

LB0==min{ll, f(50-6) /4 l} = 11

with Totl(ll) - 5 and SL0(11) = 11 - 5 = 6. Now, the only

maximal load 5, = {1, 3} is used for branching. At the

next revisit of the root node, the local bound is increased

to S
+
 = 12, the station time of the load S y = {1, 2},

because no load which is maximal for cycle time 11 and

has a station time smaller than 6 exists (5~=0). After

examining the subtree with the load {1, 2}, the lower

bound is increased to 5
+
= 16, and the root node is

fathomed because of UB = 13. In node 3, the new value

of the local lower bound results from 5""= 7 and S
+

 =

16. It is computed by

LB3==min{16, [(50-30-7)/l]} =13.

Note that the values S
+

 and S ~ for adjusting the bounds

can be determined while enumerating the loads which

are feasible for the current local lower bounds,

respectively.

4.5. Logical tests and fathoming

The Local Lower Bound Method already contains a

bounding mechanism. In each node, branching is

performed according to monotonously increasing values

of the local lower bound LBk. Hence, a node is fathomed

whenever the value of LBk reaches or exceeds UB, the

cycle time of the incumbent solution. In this section, we

describe further rules (dominance and reduction rules)

which help to reduce the size of the enumeration tree.

Definition 1. A task which is not yet assigned to any

station is called available for station k + 1 in a node at

level k of the enumeration tree if each of the preceding

tasks is already assigned to one of the stations 1,..., k , or

is already contained in the load S k + 1 .

of Operational Research 91 (1996) 367-385

Definition 2. A task h potentially dominates a task if Ff

cfft* and t j ^ t h hold. In the case of t j = t h and F *

=F/I*, the lower indexed task potentially dominates the

other one.

Maximum load rule. As already mentioned, only

maximal loads have to be considered. As a consequence,

all loads which can be extended by an available task

without exceeding the current trial cycle time YSk are to

be excluded.

Jackson dominance rule. A load S k +] can be

excluded if there is an available task h which potentially

dominates a task /'eSt+1 and

t (S k + l) - t j + t h < L B k

holds.

This rule is based on the one given by Jackson (1956). It

uses the fact that all successors of task j are successors

of task h as well and cannot start before task h is

performed. Hence, the sequence of j and h is without

consequence for the successors of /. The condition t j <

t h of Definition 2 guarantees that the station time will

not decrease if h replaces in Sfc + 1 and the second

condition of the rule secures that the current lower

bound LBt remains valid.

In our example, task 4 is potentially dominated by

task 1, task 6 by task 2, and task 7 by the tasks 3, 4, 5,

and 6. The Jackson dominance rule avoids building

nodes 14 and 23 due to the fact that task 7 can be

replaced by the dominating task 4 in the respective loads

for station 2. Furthermore, the nodes 9, 13, 18, and 22

would be avoided by the rule.

Extended maximum load rule. Consider the current

branch of the enumeration tree which leads to a node at

level k . Assume Ah to be the smallest operation time of

a task which has been available in station h = 1,..., k .

Then, for station k + 1 only loads with station times

smaller than

m m { t (S h) + A h \ h = l , . . . , k)

have to be considered, and the respective node can be

fathomed if the local lower bound reaches or exceeds

this value.

Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educación Nacional NIT:

891.480.035-9 - Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206

www.utp.edu.co - Pereira (Risaralda) Colombia

377

http://www.utp.edu.co/

Universidad

J Tecnológica, A Scholl / European

Journal

de Pereira
takes into consideration that the load of lome

station h loses the property of being maximal if in

station i + 1 a load is realized which causes the local

lower bound (i.e., the cycle time) to be larger or equal

t (S h) + A h .

On the one hand, the extended maximum load rule

results in large reductions of the enumeration tree in

most cases. On the other hand, it may prevent finding

feasible solutions in the first branches of the tree. The

latter problem can be illustrated by the following

example. Imagine, that a load S t for station 1 is feasible

for the lower bound LB0 of the root node. Furthermore,

we assume that no solution with load St and cycle time

LB0 exists and that the load S¡ can be extended by an

available task to a load with station time LB0 + 1 (at the

next revisit of the root). Then, the extended maximum

load rule fathoms all nodes of the subtree following S x

whenever their local lower bounds are increased. Hence,

the procedure acts as a Lower Bound Method in this

subtree and no feasible solution is found there. In the

case of large problem instances, such subtrees may be

very large so that no feasible solution is found within a

prespecified time limit.

In order to simultaneously use the reduction

capabilities of the extended maximum load rule and to

find feasible solutions soon, the application of the rule is

controlled by the following strategy which has been

found by parameter adjusting.

• The rule is not used for the first m
2
 nodes of the

tree.

• Furthermore, the rule is not applied to a node at

level k if

ln(UB-LB0)/(m-/t)

with the parameter

a = 1.5-ln(LB0)/m,

holds. This condition includes two aspects. First, it is

desirable to improve the upper bound UB if the

difference between UB and the (global) lower bound LB0

is large. Second, it is not expensive to complete a

solution when only few stations remain (small value of

m - k) . The bound difference is transformed into a

logarithmic value in of Operational Research 91 (1996) 367-385

order to make it comparable to the station difference.

Permutation rule. In any node at level k, a load S k + 1

does not need to be considered if

max{;' e S k + J < min{j e S k]

holds.

As a consequence of the topological numbering of

tasks, the condition of the rule guarantees that no task in

S k + l is a successor of a task in S k . Therefore, the loads

S k and S k + 1 of stations k and k + 1 can be exchanged

without violating precedence constraints. For example,

consider the loads S x = {3, 4} and S 2 = {1, 2} which

lead to node 7 in the tree of Fig. 3. Node 7 can be

fathomed because the load permutation S 1 = {1, 2} and

S 2 = {3, 4} is also examined (node 20).

Prefixing tasks. All tasks ; with

£,(UB - 1) = L;(UB - l) - k + l

are prefixed to station k + 1 in a node at level k.

The prefixed tasks must be assigned to the respective

station in order to find a feasible solution with a cycle

time smaller than UB.

The rules described above are applied to every

subproblem at a level k in the following way. First of

all, prefixing of tasks is performed which may lead to a

problem reduction. Now, all possible loads of station k

are enumerated. For each trial load the maximum load

rule, the permutation rule and the Jackson dominance

rule are applied in the given order. The remaining loads

result in new subproblems which are treated in the same

way. Whenever the local lower bound of a node is

increased the extended maximum load rule is applied

according to the above strategy. The original problem is

solved to optimality when all nodes are completely

branched or fathomed.

5. A bidirectional approach

In Section 4, we describe a version of our branch

and bound procedure SALOME-2

Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educación Nacional NIT:

891.480.035-9 - Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206

www.utp.edu.co - Pereira (Risaralda) Colombia

http://www.utp.edu.co/

Universidad
Tecnológica,^.

Scholl/European Journal of Operational Research 91 (1996) 367-385

de Pereira

379

13/4 13/1

: —LM -------- [a] ------ 13 ------ f.-?
 ------------------- 2.1 -TU UB=13

Fig. 5. Backward enumeration for the example problem.

(hereafter called UniFor) which works from station 1 to

m in an unidirectional, forward oriented manner. For

several types of optimization problems bidirectional

algorithms are shown to be more successful than

unidirectional ones (cf., e.g., Lawler, 1991). As

indicated by Scholl and Klein (1994) as well as Scholl

and VoB (1994), this is the case for assembly line

balancing problems, too. Hence, we describe a

modification of SA-LOME-2 which uses a flexible

bidirectional branching strategy.

An easy adaptation can be made to use the algorithm

of Section 4 in a backward manner. This is achieved by

applying it to the reversed precedence graph which

results from reversing the directions of all arcs (cf., e.g.,

Saltzman and Baybars, 1987). Tasks are considered in

order of decreasing task numbers during enumeration.

In the sequel, this version of SALOME-2 will be named

UniBack.

The enumeration tree of Fig. 5 is built by UniBack

for our example. Only one branch, which represents the

optimal solution S5 = {10}, 54 = {9, 8}, 53 = {7, 6, 5}, S2

= (4, 3}, S1 = {2, 1}, is constructed because the lower

bound LB0 of the root node can immediately be

increased to 12.

The example shows that the planning direction may

have a considerable influence on the solution effort of

the algorithm. In order to take advantage of this fact, it is

desirable to be able to use both planning directions

simultaneously in form of bidirectional branching.

Simple bidirectional versions of SALOME-2, BiFor and

BiBack, are obtained by considering stations in the

order 1, m , 2, m - 1,..., \ (m + D/21, or m , 1, m - 1,

2,..., l(m + l)/2J,respectively. These strategies swap

between forward steps (choose the first not yet

considered station) and backward steps (choose the last

not yet considered station). In backward steps, the

reversed precedence graph is considered.

A more flexible approach (BiFlex) uses a priority

based strategy to decide on the branching direction.

Within this strategy, a mean value T (k) of operation

times per station serves as priority criterion. For its

definition we introduce

c - = UB- 1,

the maximum cycle time of an improved solution and

the set

A k (c) - {;|*eSI,(c)}

of tasks potentially assignable to station k for the

maximum cycle time c:

£,eWV(
L
^)-£;(c-) + l))

T { k)
-

\ A k (c) \

for k = \ , . . . , m . (3)

In (3), the operation times of all tasks j , which are

potentially assignable to a station k , are

Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educación Nacional NIT:

891.480.035-9 - Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206

www.utp.edu.co - Pereira (Risaralda) Colombia

 j
1 2 3 4 5 6 7 8 9 10

t j 6 6 5 5 4 5 4 2 9 4

E j (c) 1 1 1 1 2 2 2 3 4 4

L/c) 3 4 3 3 4 4 4 4 5 5

Table 4

Earliest and latest stations in the root node

http://www.utp.edu.co/

Scholl/European Journal of Operational Research 91 (1996) 367-385

\t¡
UB=13

Station 5 Station 4

Fig. 6. Bidirectional enumeration tree for the example problem.

Universidad)¡f

Tecnológica^.

de Pereira
proportionately distributed among the stations of the

station interval Sly(c). The sum of these parts is divided

by the number of potentially assignable tasks resulting

in a mean value T (k) of the operation times of tasks for

station k .

Let k f and k b be the next stations to be considered

in forward and backward direction, respectively. Then,

the following priority rule decides on the branching

direction:

Perform a forward step, i f T (k {) > T (k b) or T (k {)

= T (k h) and

\ A k < (c) \ < \ A k b (c) \ .

In all other cases, make a backward step.

This simple rule is based on the longest processing time

first rule which is successfully used in many

unidirectional algorithms for SALBP-1 and other

problems (cf. Scholl and Klein, 1994, for a foundation).

It enables BiFlex to decide in each subproblem on the

planning direction for the next step depending on the

data of the respective reduced problem.

We illustrate the proceeding of BiFlex by our

example and start with UB = 15 (c = 14). Table 4

contains the earliest and latest stations in the root node.

Fig. 6 shows the resulting enumeration tree.

The first decision is to choose among the stations k f =

1 and k h = m = 5. Due to 7(l) = (f+ f+ f+ f)/4=1.71 and

7X5) = (f + |)/2 = 3.25,

a backward step is preferred. After increasing LB0

from 10 to 12 and building the load S5 = {10}, the

values of L,(c) have to be modified (those of £y(c) are

not affected); see Table 5.

Because of 7(1) = 2.29 < 7(4) = 5, the station 4 is

considered in a backward step. The load 54 = {9, 8} is

branched and the latest stations remain valid for the not

yet assigned tasks 1,..., 7. Hence, 7(1) keeps its value.

Due to 7(3) = 2.03, the next step is a forward one. After

assigning tasks 1 and 2 to station 1, the stations 2 and 3

as well as the tasks 3,..., 7 build the reduced problem

with earliest stations E j i c) = 2 for / = 3, 4, 5, 7 and

E 6 (c) = 3 and the latest stations of Table 5. Because of

7(2) = 7(3) = 2.875 and I A 2 (c) I = I A 3 (c) | = 4, the

tie breaker of the rule chooses station 2 in a forward

step. Since no loads feasible for the local lower bound

of 12 are available, it is increased to 13. For this cycle

time the current partial solution can be completed by S 2

= {3, 4} and 53 = {5, 6, 7}. Only in node 2 another load

(of station 1) feasible for cycle time 12 is available.

; i 2 3 4 5 6 7 8 9

Lj (c) 2 3 2 3 3 3 3 4 4

Table 5

Latest stations in node 1

 II
ISO 9001:2000

BUREAU VERITAS

C Brìi! i cati on 1

Acreditada Institucionalmente de Alta Calidad por el Ministerio de Educación Nacional NIT:

891.480.035-9 - Apartado Aéreo: 097 - Tel. Conmutador: (57) (6) 313 7300 - Fax: 321 3206

www.utp.edu.co - Pereira (Risaralda) Colombia

http://www.utp.edu.co/

R Klein, A. Scholl/European Journal of Operational Research 91 (1996) 367-385

6. Computational results and

381

LB

In this section, we report on results of computational

experiments comparing existing algorithms and several

versions of SALOME-2.

6.1. Data sets and experimental conditions

In the literature, no benchmark data sets are available

for SALBP-2. We collected two data sets with 128 and

174 instances, respectively, which are based on

problems (precedence graphs) described in the

SALBP-1 literature. The data sets contain 9 and 8

different problems with 25 to 297 tasks. For each

problem a range of station numbers is used to construct

several instances (defined by a precedence graph and a

number m of stations). The complete problem

definitions and solutions are given in Scholl (1993).

All tests are performed on an IBM-compatible

personal computer with 80486 DX2-66 central

processing unit. Every tested algorithm is coded by

means of Borland's Pascal 7.0 and is applied to each of

the 302 problem instances of both data sets with a time

limit of 500 CPU seconds. If the time limit is reached

{time out for short) without proving the current

incumbent solution to be optimal, only a heuristic

solution is provided. Then, the obtained solution is

characterized by the current global lower bound LB and

the current upper bound UB. The quality of this solution

can be measured by the relative deviations

UB

devUB :=

devLB —

of the upper and the lower bound from the

optimum cycle time c * , respectively. If c * is

presently not known, the best available lower bound

value is used for computing deviations.

The procedures are compared with respect to the

following measures (based on 302 instances):

opt. : Number of instances for which an

optimal solution is found and proven.

fail : Number of instances for which the

initial feasible solution is not improved.

av.dev UB : Average relative deviation of UB

from optimality in %. max.dev UB:

Maximum relative deviation of UB

from optimality in %. av.dev LB :

Average relative deviation of LB

from optimality in %. av.cpu :

Average execution time in seconds.

6.2. Comparing several SALBP-1 based search methods

In Section 3.1, different general search methods

which determine the minimal cycle time by solving

SALBP-F instances for several trial cycle times are

described. We report on a comparative evaluation of the

Lower Bound Method (LBM), the Binary Search (BS),

the Fibonacci and Binary Search (FBS) and the Binary

Search with Pre-specified Entry Point (EBS).

As initial values for thé boundaries of the search

interval [LB, UB], we take the lower bound

Table 6

Comparison of search methods

LBM BS FBS EBS

opt.

fail

av.dev UB

max.dev UB

av.dev LB

av.cpu

150

152 24.17

99.96

-0.22

264.06

141

0

1.25

11.84

-0.40

282.50

150

126 15.95

99.96

-0.28

264.24

140

32 7.10

99.86

-0.40

281.50

100%

100%

382

LB1 and the upper bound which is heuristically

determined as described in Section 2 (Hackman et al.,

1989, use a theoretical value of UB). Two different

transformations are examined by considering the tasks

in the original and the reverse ordering of their numbers,

respectively. Since the initial UB is often far away from

the optimal cycle time, we exclude the upper bound

method from the test.

Within each of the four tested search methods, a

version of FABLE which is modified to solve feasibility

problems (SALBP-F) is applied. The results are

summarized in Table 6.

Table 6 shows that LBM and FBS solve more

instances to optimality than the other procedures

because the lower bound cycle times LB1 are optimal

for many problem instances. In these cases, LBM and

FBS check only one trial cycle time while the other

methods need more iterations. On the other hand, LBM

fails to find a feasible solution at all in case of exceeding

the time limit which occurs for more than half of the

instances. Then, only the initial feasible solution with a

worst case deviation of almost 100% is available. The

same problem appears with FBS when it runs out of

time in the Fibonacci Search phase. EBS fails to

improve the initial solution if the first trial cycle time is

too small or solving the respective SALBP-F instance

takes too much time. Only BS finds feasible solutions

for all instances. Consequently, it shows the best aver-

age and maximum deviations of UB from optimality.

The worse values of the other methods result from the

instances for which they are not able to improve the

initial solutions. With respect to the average

computation times (including 500 seconds in case of

time out) LBM and

FBS are better than the two other search methods be-

cause they find more optimal solutions and need fewer

iterations for the respective instances. Furthermore,

they result in better lower bound deviations.

The results can be summarized as follows. Only BS

reaches acceptable solutions for all instances. While

performing well for many instances, the search

methods LBM and FBS fail to improve the initial

feasible solution for harder problems. The choice of the

particular first trial cycle time by EBS does not seem to

be advantageous because this cycle time is not

appropriate in some cases.

6.3. Comparing unidirectional and bidirectional versions of

SALOME-2

In this section, we report on a comparison of the

different versions UniFor, UniBack, BiFor, BiBack,

and BiFlex of SALOME-2. The bounds LB and UB are

determined as described in Section 6.2. In Table 7, we

present a summary of the results.

The algorithm UniFor is outperformed by its mirror

image UniBack. This indicates that the planning

direction plays an important role with respect to the

efficiency of the algorithm. The static bidirectional

algorithms BiFor and BiBack are not able to improve

the results of their unidirectional counterparts. On the

contrary, they perform worse for some instances. The

best results with respect to all criteria are obtained by

BiFlex. Its flexible strategy is able to obtain solutions at

least as good as the best of the four static algorithms for

260 of the 302 instances.

Table 7

Comparison of different planning directions

UniFor UniBack

opt. 164 184

fail 1 0

av.dev UB 1.09 0.90

max.devUB 10.05 11.73

av.dev LB -0.33 -0.21

av.cpu 242.74 208.71

BiFor BiBack BiFlex

nï m 2Î7
1 2 0

1.24 1.51 0.56

53.22 53.22 10.03

-0.24 -0.19 -0.12

228.99 210.92 157.03

R. Klein, A. Scholl / European Journal of Operational Research 91 (1996) 367-385

R. Klein, A. Scholl/European Journal of Operational Research 91 (1996) 367-385 383

6.4. Comparing SALOME-2 with existing procedures

We compare the flexible bidirectional version BiFlex

of SALOME-2 (shown to be effective in Section 6.3)

with four existing procedures. Three of them use

modified SALBP-1 algorithms in the framework of

Binary Search which appeared to be the best search

method (cf. Section 6.2). The chosen SALBP-1 solvers

are FABLE, EUREKA, and SALOME-1 (cf. Section

3.1). Furthermore, a version of the taskoriented branch

and bound procedure of Scholl (1994) which directly

solves SALBP-2 is included in the test (TBB for short,

cf. Section 3.2). FABLE is applied as described in

Section 6.2. Since EUREKA contains several parts, the

remaining computation time is equally split up between

the forward and the backward procedure in each

iteration of the search process. If the time limit is

reached only the heuristic procedure is applied for all

remaining trial cycle times. This leads to total

computation times exceeding the prespecified time limit

of 500 seconds by about 7 seconds on average.

The algorithms SALOME-1 and SALOME-2 reflect

the relationship between SALBP-1 and SALBP-2.

While SALOME-2 applies a Local Lower Bound

Method with respect to the cycle time, SALOME-1 uses

a very similar technique for the number of stations. In

both cases, SALBP-F instances arise for temporarily

fixed local lower bounds on the cycle time and the

number of stations, respectively. Because of this close

relationship between the two methods, they contain

common components like the procedure for

enumerating station loads, most of the dominance and

reduction rules and the flexible bidirectional branching

strategy. The main differences are that SALOME-2

avoids repeated enumeration of parts of the tree and that

it considers only possible cycle times. SALOME-1 is

only used for solving feasibility problems within a Bi-

nary Search, i.e., no local bound enlargement takes

place.

The algorithm TBB originally contains a heuristic

procedure with a tabu search meta strategy to obtain

initial feasible solutions. In order to have equal start

conditions, the heuristic is not used, and all algorithms

start with the same lower and upper bounds as in the

previous sections. Scholl (1994) describes a number of

priority rules for selecting the next

task-station-combination to be fixed in a node of the

enumeration tree. Among these, one similar to the

bidirectional strategy of SALOME-2 is chosen because

it clearly outperforms the other rules.

The five algorithms are applied to the combined data

set with 302 instances in the same way as described in

Section 6.2. The results are summarized in Table 8 (cf.

Tables 6 and 7 for the results of FABLE (column BS)

and SALOME-2 (column BiFlex), respectively).

The algorithms SALOME-1 (with Binary Search)

and SALOME-2 show quite similar results because of

their close relationship discussed above. Only with

respect to the maximal deviation SALOME-2 has a

significantly smaller value. Both methods clearly

outperform the other procedures.

TBB does only well concerning the number of

optimal solutions and the lower bound deviations. The

large average and maximum deviations of UB from

optimality are due to the enumeration scheme which

orientates on improving the current UB instead of trying

to hold a current lower bound like the SALOME

procedures. Furthermore, it assigns only a single task in

each branching step which requires the application of

expen-

Table 8

Comparison of different algorithms

FABLE EUREKA SALOME-1 TBB SALOME-2

#opt. av.dev

UB max.dev

UB av.dev

LB av.cpu

141

1.25

11.84

-0.40

282.50

178

0.62

11.86

-0.55

293.34

215

0.53

15.25

-0.11

164.43

201

1.30

17.86

-0.21

188.36

217

0.56

10.03

-0.12

157.03

384 R. Klein, A. Scholl / European Journal of Operational Research 91 (1996) 367-385

sive logical tests in order to avoid constructing badly

utilized station loads.

The results of the SALBP-1 procedures FABLE,

EUREKA, and SALOME-1 in the framework of Binary

Search confirm the findings of Scholl and Klein (1994)

who compared these algorithms for several data sets of

SALBP-1 instances. SALOME-1 significantly

outperforms the other procedures which is mainly due

to its flexible bidirectional branching strategy and its

sophisticated bounding and dominance rules. EU-

REKA'S superiority to FABLE with respect to the

number of optimal solutions and the upper bound

deviations relies on the use of both planning directions

as well as the heuristic. The better lower bound

deviations and the shorter average computation times of

FABLE can be explained by its bounding and

dominance rules which are not included in EUREKA.

m of stations minimizing the sum of idle times. This

problem has a nonlinear objective function depending

on c and m. Two possible solution approaches consist

of iteratively solving SALBP-1 instances for several

values of c, or SALBP-2 instances for several values of

m, respectively. Hence, further research may focus on

examining whether SALBP-1 or SALBP-2 based

procedures are more suitable for solving SALBP-G

efficiently.

Acknowledgments

We wish to thank Professor Thomas Hoffmann and

Professor Roger Johnson for providing us with copies

of their Fortran codes of EUREKA and FABLE,

respectively.

7. Summary and conclusions

In this paper, we present solution procedures for

SALBP-2 which consists of balancing the work on an

assembly line such that for a given number of stations

the cycle time is maximized. For this problem type only

few methods have been proposed in literature so far.

Almost all approaches apply procedures for the strongly

related SALBP-1, which is to minimize the number of

stations for a given production rate, in the framework of

a general search method. Effective solvers for this

problem type are the well-known algorithms FABLE

and EUREKA as well as a combination of these

methods, called SALOME-1. The latter has been used

to develop a procedure, named SA-LOME-2, which

directly solves SALBP-2. Computational experiments

show that this new approach clearly outperforms former

methods. To our knowledge, this is the first time that

SALBP-2 procedures are comprehensively

investigated. Due to the lack of appropriate data sets, a

new one with 302 instances has been constructed.

SALBP-2 as well as SALBP-1 are restricted

versions of the general simple assembly line balancing

problem (SALBP-G) which is to find a combination of

the cycle time c and the number

References

Baybars, I. (1986), "A survey of exact algorithms for the simple

assembly line balancing problem", Management Science 32,

909-932.

Charlton, J.M., and Death, C.C. (1969), "A general method for

machine scheduling", International Journal of Production

Research 7, 207-217.

Coffman, E.G., Garey, M.R., and Johnson, D.S. (1978), "An

application of bin-packing to multiprocessor scheduling",

SIAM Journal on Computing 7, 1-17.

Domschke, W., Scholl, A., and VoB, S. (1993),

Produktions-planung - Ablauforganisatorische Aspekte,

Springer-Verlag, Berlin.

Hackman, S.T., Magazine, M.J., and Wee, T.S. (1989), "Fast,

effective algorithms for simple assembly line balancing

problems", Operations Research 37, 916-924.

Held, M., Karp, R.M., and Shareshian, R. (1963), "Assembly line

balancing - Dynamic programming with precedence

constraints", Operations Research 11, 442-459.

Hoffmann, T.R. (1963), "Assembly line balancing with a

precedence matrix", Management Science 9, 551-562.

Hoffmann, T.R. (1992), "EUREKA: A hybrid system for

assembly line balancing", Management Science 38, 39-47.

Jackson, J.R. (1956), "A computing procedure for a line

balancing problem", Management Science 2, 261-271.

Johnson, R.V. (1988), "Optimally balancing large assembly lines

with 'FABLE' ", Management Science 34, 240-253.

Lawler, E.L. (1991), "Computing shortest paths in networks

derived from recurrence relations", Annals of Operations

Research 33, 363-377.

Mansoor, E.M. (1964), "Assembly line balancing - An im-

provement on the ranked positional weight technique",

Journal of Industrial Engineering 15, 73-77; 322-323.

R. Klein, A. Scholl / European Journal of Operational Research 91 <1996) 367-385 385

McNaughton, R. (1959), "Scheduling with deadlines and loss

functions", Management Science 6, 1-12.

Saltzman, M.J., and Baybars, I. (1987), "A two-process implicit

enumeration algorithm for the simple assembly line balancing

problem", European Journal of Operational Research 32,

118-129.

Scholl, A. (1993), "Data of assembly line balancing problems",

Schriften zur Quantitativen Betriebswirtschaftslehre 16/93, TH

Darmstadt.

Scholl, A. (1994), "Ein B & B-Verfahren zur Abstimmung von

Fließbändern bei gegebener Stationsanzahl", in: H. Dyckhoff, U.

Derigs, M. Salomon and H.C. Tijms (eds.), Operations Research

Proceedings 1993, Springer-Verlag, Berlin, 175-181.

Scholl, A. (1995), Balancing and Sequencing of Assembly Lines,

Physica, Heidelberg.

Scholl, A., and Klein, R. (1994), "Combining the power of FABLE

and EUREKA for assembly line balancing - A bidirectional

branch and bound procedure", Schriften zur

Quantitativen Betriebswirtschaftslehre 7/94, TH Darmstadt.

Scholl, A., and Voß, S. (1994), "Simple assembly line balancing -

Heuristic approaches", Schriften zur Quantitativen

Betriebswirtschaftslehre 2/94, TH Darmstadt.

Schräge, L., and Baker, K.R. (1978), "Dynamic programming

solution of sequencing problems with precedence constraints",

Operations Research 26, 444-449.

Talbot, F.B., and Patterson, J.H. (1984), "An integer programming

algorithm with network cuts for solving the assembly line

balancing problem", Management Science 30, 85-99.

Talbot, F.B., Patterson, J.H., and Gehrlein, W.V. (1986), "A

comparative evaluation of heuristic line balancing techniques",

Management Science 32, 430-454.

Wee, T.S., and Magazine, M.J. (1981), "An efficient branch and

bound algorithm for an assembly line balancing problem - Part II:

Maximize the production rate", Working Paper No. 151,

University of Waterloo, Waterloo, Ont.

