DISEÑO DEL PLAN DIRECTOR DE CALDERAS 2017 PARA LAS CENTRALES TERMOELÉCTRICAS MARTIN DEL CORRAL (TERMOZIPA) Y CARTAGENA DE EMGESA SA ESP.

JULIO 2017
ÍNDICE

1. INTRODUCCIÓN..3
2. OBJETIVO ..3
3. ALCANCE ..3
4. GLOSARIO ..4
5. REFERENCIAS ...5
6. FRECUENCIA DE LAS INSPECCIONES ..6
7. GUIA DE INSPECCIONES ..7
 7.1. INSPECCIONES EN SERVICIO ...7
 7.2. INSPECCION DE VÁLVULAS DE SEGURIDAD ..8
 7.3. INSPECCIONES CORTAS ..9
 7.3.1. Inspección externa ...9
 7.3.2. Inspección interna (de las partes accesibles) ..9
 7.4. INSPECCIONES DE INTEGRIDAD ...10
 7.4.1. Domo superior ..10
 7.4.2. Tuberías del banco principal ..12
 7.4.3. Domo inferior ..14
 7.4.4. Downcomer Tubes ...16
 7.4.5. Feeder Tubes ..17
 7.4.6. Colectores inferiores de paredes de agua frontales y traseras17
 7.4.7. Colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero) ..19
 7.4.8. Paredes de agua ..21
 7.4.9. Colectores superiores de paredes laterales de agua (paneles frontal, central y trasero) ..31
 7.4.10. Riser Tubes ..33
 7.4.11. Roof Tubes ...33
 7.4.12. Screen Tubes ..35
 7.4.13. Steam Supplies ..35
 7.4.14. Sobrecalentador Primario ..36
 7.4.15. Colector salida de sobrecalentador primario ..37
 7.4.16. Tubería de Transferencia (atemperación) ...39
 7.4.17. Colector de entrada del sobrecalentador secundario40
 7.4.18. Sobrecalentador Secundario ...41
 7.4.19. Colector de salida del sobrecalentador secundario ..42
 7.4.20. Tubo espaciatador ...44
 7.4.21. Cámara muerta superior (Pent-house) ..44
 7.4.22. Cámara muerta de la nariz superior (Nose Dead Space)45
 7.4.23. Cinturones de amarre (buckstays) ..45
 7.4.24. Windbox ..46
 7.5. INSPECCIONES DE SEGURIDAD ...46
8. ANEXOS ...49
9. PROPUESTA: CALIFICACIÓN DE PERSONAL PARA OPERACIÓN DE CALDERAS ..50
1. INTRODUCCIÓN

El presente documento constituye el Plan Director de Calderas de las centrales Martín del Corral (Termozipa) y Cartagena, centrales pertenecientes a EMGESA SA ESP del grupo ENEL.

El objeto de este documento, consiste en recoger las inspecciones y mejores prácticas de la ingeniería necesarias para realizar un mantenimiento predictivo y preventivo, usando como referencia documentos técnicos del grupo ENEL y regulaciones regionales donde el grupo tiene presencia.

El enfoque del Plan Director es, por tanto, el de un sistema dinámico que se modifica para adaptarse a las condiciones de operación de la planta y a su envejecimiento, optimizando en todo momento los recursos empleados en el mantenimiento y mejorando la disponibilidad de la planta.

2. OBJETIVO

El objetivo del Plan Director de Calderas es servir de documento base para la realización de un mantenimiento predictivo y preventivo basado en la condición actual de cada componente. Esta condición se determina de una forma periódica mediante la realización de inspecciones no destructivas en las revisiones y de los correspondientes análisis de los fallos y averías que pudieran ocurrir durante la operación y el análisis de las condiciones de operación de las calderas.

3. ALCANCE

Para efectos de esta guía técnica, se define para las centrales Termozipa y Cartagena, la categoría de las calderas. Dichas calderas se catalogan como calderas pertenecientes a la categoría A según la NR-13 de Brasil\(^1\) (ver Tabla 1 y Tabla 2). Esto se debe a que en Colombia el reglamento técnico para calderas se encuentra en borrador de resolución [1].

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD 2</th>
<th>UNIDAD 3</th>
<th>UNIDAD 4</th>
<th>UNIDAD 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión del vapor de salida (Kgf / Cm(^2))</td>
<td>59,8</td>
<td>87,9</td>
<td>87,9</td>
<td>87,9</td>
</tr>
<tr>
<td>Temperatura del vapor de salida (°C)</td>
<td>480</td>
<td>510</td>
<td>510</td>
<td>510</td>
</tr>
</tbody>
</table>

Tabla 1. Parámetros operativos del vapor de las calderas de Termozipa

\(^1\) Calderas de la categoría A: la presión de operación de la caldera supera los 19,98 Kgf / Cm\(^2\)
<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD 1</th>
<th>UNIDAD 2</th>
<th>UNIDAD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión del vapor de salida</td>
<td>87,9</td>
<td>87,9</td>
<td>87,9</td>
</tr>
<tr>
<td>(Kgf / Cm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura del vapor de salida</td>
<td>510</td>
<td>510</td>
<td>510</td>
</tr>
<tr>
<td>(°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2. Parámetros operativos del vapor de las calderas de Cartagena

Se definieron los límites en lo que se refiere a “CALDERA”; de la siguiente manera: Los elementos que componen la caldera, estarán comprendidos desde la entrada del tubo de agua de alimentación de la caldera, incluida la válvula de corte de entrada, en su conexión con el tambor superior (A), hasta la conexión con la tubería de vapor principal hacia turbina, (B) que se encuentra inmediatamente posterior de la válvula de seguridad electromática de vapor principal-VSE (ver la Ilustración 1).

Ilustración 1. Puntos de delimitación de la caldera

4. GLOSARIO

DMR: diseños de modificación o reparación
DZ: medición de durezas
END: ensayo no destructivo
EMAT: ultrasonidos generados electromagnéticamente sin necesidad de contacto
IV: inspección visual
IV (e): inspección visual endoscópica
LAB: toma de muestra para análisis en laboratorio
LP: líquidos penetrantes
PC: personal calificado
PH: prueba hidrostática
PM: partículas magnéticas
PMTA: presión máxima de trabajo admisible
RM: replica metalográfica
UT: ensayo con ultrasonidos de haz angular
UTO: medida de la capa de magnetita mediante ultrasonidos
VC: Válvula de corte
VSE: Válvula de seguridad electromática
VSM: Válvula de seguridad mecánica
ZAT: zona afectada térmicamente

5. REFERENCIAS

Ilustración 2. Esquema de los documentos en los cuales se basa el plan director
6. FRECUENCIA DE LAS INSPECCIONES

Para estas inspecciones se tomó como referencia el estándar técnico para el mantenimiento de calderas [2]

A continuación, en la Tabla 3, se definen las frecuencias y tiempos de duración para las inspecciones estipuladas en la GUIA DE INSPECCIONES:

<table>
<thead>
<tr>
<th>TIPO DE INSPECCIÓN</th>
<th>FRECUENCIA</th>
<th>DURACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspección en servicio</td>
<td>6 meses</td>
<td>1 a 3 días</td>
</tr>
<tr>
<td>Inspección de válvulas de seguridad</td>
<td>1 - 2 años</td>
<td>1 semana</td>
</tr>
<tr>
<td>Inspección corta</td>
<td>1 año</td>
<td>3 - 5 días</td>
</tr>
<tr>
<td>Inspección de integridad</td>
<td>≈25000 (±3000) EOH (2)</td>
<td>25 - 45 días</td>
</tr>
<tr>
<td>Inspecciones de seguridad</td>
<td>2 años (ver numeral 7.5)</td>
<td>3 a 7 días</td>
</tr>
</tbody>
</table>

Tabla 3. Frecuencia de las inspecciones

(2) El cálculo de las frecuencias de las inspecciones de integridad se hace a través del cálculo de horas equivalentes de operación (EOH) de la caldera.

\[
EOH = OH + (CS \times 100) + (WS \times 40) + (HS \times 20)
\]

Dónde:
- \(EOH \) = horas de operación equivalentes.
- \(OH \): Horas de operación (con fuego)
- \(CS \): Arranques en frío
- \(WS \): Arranques en tibio
- \(HS \): Arranques en caliente
7. GUIA DE INSPECCIONES

Esta guía proporciona los lineamientos técnicos para las inspecciones de mantenimiento que se deben realizar, teniendo como base las mejores prácticas de la ingeniería, documentos técnicos de la experiencia de mantenimiento de calderas del grupo ENEL a nivel global y las regulaciones de carácter mandatorio en Brasil.

En esta sección se especifican las inspecciones en servicio, inspecciones cortas, inspecciones de integridad e inspecciones de seguridad. Las inspecciones deben cumplir con las condiciones descritas en el documento Anexo I: Método de Inspección Preventiva y Predictiva en Calderas. En este documento, se explican los aspectos fundamentales que se deben tener en cuenta antes, durante y después de realizar las inspecciones en las calderas de EMGESASA ESP.

Cabe aclarar que las calderas de las centrales Termozipa y Cartagena, poseen diferencias entre sí (algumas dimensiones en los tubos o número de tubos) que no afectan las inspecciones detalladas en esta guía.

7.1. INSPECCIONES EN SERVICIO

Para estas inspecciones se tomó como referencia la guía para uso seguro de equipos a presión [3]

Las inspecciones en servicio deben realizarse tanto con caldera en servicio como fuera de servicio, sin necesidad de una parada de planta. Consisten en verificar las condiciones reales de servicio de la caldera en relación con los parámetros y condiciones normales y evaluar la funcionalidad de los dispositivos de seguridad. Las inspecciones que se deben realizar se encuentran resumidas a continuación.

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspecciones visuales a la caldera y accesorios</td>
<td>Inspecciones visuales externas de:</td>
</tr>
<tr>
<td></td>
<td>- Aislamiento</td>
</tr>
<tr>
<td></td>
<td>- Tuberías externas</td>
</tr>
<tr>
<td></td>
<td>- Conexiones y accesorios (juntas de dilatación)</td>
</tr>
<tr>
<td></td>
<td>- Soportes de tuberías y colgantes, fijaciones, etc.)</td>
</tr>
<tr>
<td></td>
<td>- Presencia de fugas</td>
</tr>
<tr>
<td></td>
<td>- Presencia de corrosión (bajo aislamiento, en estructuras, etc.). Tomar muestras aleatorias</td>
</tr>
<tr>
<td></td>
<td>- Presencia de vibraciones, deformaciones o cualquier otra indicación relevante para la seguridad (de acuerdo con la Instrucción Operativa ENEL N o 69).</td>
</tr>
</tbody>
</table>
Controles y registros
[Presión, Temperatura, Niveles]

<table>
<thead>
<tr>
<th></th>
<th>Verificación de parámetros operativos de campo y remotos verificando diferencias.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atemperador</td>
<td>Prueba funcional de las válvulas de atemperación</td>
</tr>
<tr>
<td>Válvulas de seguridad</td>
<td>Prueba de ajuste de la presión de la válvula de seguridad electromática.</td>
</tr>
<tr>
<td></td>
<td>Verificación visual de las válvulas de seguridad (el dispositivo instalado debe cumplir los requisitos de diseño y no puede ser bloqueado) y fugas.</td>
</tr>
<tr>
<td>Dispositivos automatizados de seguridad</td>
<td>Prueba funcional en sistemas de seguridad y alarmas implementadas para prevenir el riesgo de sobrepasar los límites de temperatura, presión, flujo, etc. (sobre flujos o sobre nivel).</td>
</tr>
<tr>
<td></td>
<td>Prueba funcional en válvulas reguladoras de nivel del domo superior.</td>
</tr>
</tbody>
</table>

7.2. INSPECCIÓN DE VÁLVULAS DE SEGURIDAD

Para estas inspecciones se tomó como referencia la NR-13 de Brasil [4].

Las siguientes inspecciones deben aplicarse a las válvulas de seguridad de la caldera, que están instaladas en el domo superior (VSM1 y VSM2) y a la salida del sobrecalentador final (VSE y VSM3) (ver Ilustración 1).

- Las válvulas de seguridad deben tener una placa de identificación clara y dispuesta en forma tal que no se pueda alterar o borrar. Conservar en buen estado las placas y sellos de identificación de la caldera y sus partes, así como las marcas estampadas en las válvulas de seguridad. La placa debe contener la siguiente información:
 - Nombre del fabricante o marca.
 - Número de serie y modelo.
 - Presión de disparo en bar.
 - Capacidad de descarga en kg/h
 - Placa de calibración.

- Toda válvula de seguridad instalada en cualquiera de las calderas, deberá contar con su certificado de conformidad de producto (estampe ASME o su equivalente), respaldado bajo una norma internacional reconocida y emitido por un organismo de certificación de producto acreditado.

- Las válvulas de seguridad deben ser probadas para verificar su calibración (punto de apertura y cierre), al menos una vez por año y dejar registro de esta prueba.
Las válvulas de seguridad con bridas o roscadas instaladas en la caldera deben ser desmontadas, inspeccionadas y probadas en un banco. En el caso de que esté soldada, se hará en el sitio, en períodos compatibles con su historia operacional. Además de después de instaladas, se deben realizar las pruebas de verificación de calibración en servicio. Esta labor debe realizarse cada dos años y disponer de su respectivo informe de la inspección y de la prueba.

7.3. INSPECCIONES CORTAS

Para estas inspecciones se tomó como referencia el estándar técnico para el mantenimiento de calderas [2].

El objetivo de esta inspección es detectar y realizar un seguimiento de las anomalías, deficiencias, signos de daños y el deterioro de la caldera. Esta información es vital para el seguimiento de los indicadores más importantes del estado de la unidad.

A continuación, se describen las inspecciones que se deben realizar en la caldera.

7.3.1. **Inspección externa**

- Revisión de los colgantes y soportes por condiciones de esfuerzos o daños. Inspección en Caliente y Frío.
- Revisión del aislamiento por condiciones de esfuerzos o daños. Inspección en Caliente y Frío.
- Revisión de las puertas de acceso o “Manholes” y ventanas de observación (mirillas) por daños o bloqueos.
- Revisión de las juntas de expansión por daños o posibles signos de fugas.
- Chequeo de los cinturones o “Busckstays” y guías por desalineación o daños.
- Chequeo de sopladores, líneas de agua/vapor, válvulas y accesorios por fugas o cualquier otra indicación.
- Chequeos de entradas de tubería a la caldera por signos de daños.
- Revisión de daños o fugas en instrumentación de la caldera.
- Chequeo del estado de limpieza general.

7.3.2. **Inspección interna (de las partes accesibles)**

- Chequeo de limpieza, acumulaciones de ceniza y ensuciamiento
- Chequeo de daños en quemadores
- Revisión de las tolvas y el cenicero
- Revisión del estado del refractario
- Chequeos de cámaras (pent-house, cámara muerta de la nariz superior e inferior) por signos de daños.
7.4. INSPECCIONES DE INTEGRIDAD

Para estas inspecciones se tomó como referencia el estándar técnico para el mantenimiento de calderas [2] y el manual de inspecciones C.T. Termozipa U3 [5].

El objetivo de la de la inspección de integridad es registrar cualquier anormalidad, deficiencia, signo de daño, o deterioro, aplicando las técnicas de inspección necesarias, para asegurar una operación segura y la disponibilidad de la unidad.

La inspección de la integridad se realiza a través de inspecciones visuales tanto externas como internas (donde sea aplicable) en cada componente de la caldera, mediciones de espesores, líquidos penetrantes y otros ensayos no destructivos para evaluar posibles situaciones de daños existentes o incipientes. Los resultados de estas inspecciones deben direccionar la evaluación de ciclo de vida de los componentes críticos.

Para estas inspecciones, se hará uso de los planos de la central Termozipa para dar un mejor entendimiento de la zona de la caldera en la cual se deben realizar los END pertinentes.

A continuación, se describen las inspecciones que se deben realizar para cada uno de los componentes de la caldera.

7.4.1. Domo superior

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual interna del domo, revisión del nivel de agua, separadores de humedad, ciclones y todas las demás partes internas del domo</td>
<td>Separadores de humedad (zona HS)</td>
<td>100%</td>
<td>IV</td>
<td>3600-02-16-0001</td>
<td>Corrosión por pitting, erosión por vapor, corrosión por errores en la dosificación química, agrietamientos por corrosión-fatiga y signos de daño.</td>
</tr>
<tr>
<td></td>
<td>Ciclones (zona CN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual externa del domo</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-70</td>
<td>Deterioro del aislamiento térmico, decadencia de la integridad del domo.</td>
</tr>
<tr>
<td>3</td>
<td>Inspección por partículas magnéticas de soldaduras exteriores e interiores de la conexión entre el domo y tubería de agua de alimentación.</td>
<td>Tuberías de agua de alimentación (FW)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-70 3600-02-16-0001</td>
<td>Grietas por fatiga y/o creep crack growth</td>
</tr>
<tr>
<td>Nivel</td>
<td>Descripción</td>
<td>Conexiones</td>
<td>Método</td>
<td>Nivel</td>
<td>Comentarios</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inspección por partículas magnéticas de soldaduras exteriores e interiores de las conexiones entre el domo y toberas de las válvulas de seguridad.</td>
<td>Toberas de las válvulas de seguridad (VS1 y VS2).</td>
<td>50% PM</td>
<td>CA-141-70</td>
<td>Grietas por fatiga y/o creep crack growth</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas de soldaduras exteriores e interiores de la conexión entre el domo y tubería de vapor auxiliar.</td>
<td>Tubería de vapor auxiliar (VAX)</td>
<td>100% PM</td>
<td>CA-141-70</td>
<td>Grietas por fatiga y/o creep crack growth</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Inspección por partículas magnéticas de soldaduras exteriores e interiores de la conexión entre el domo y “Steam Supplies”.</td>
<td>“Steam Supplies” (Zona SS, Fila 31 a 35)</td>
<td>25% PM</td>
<td>CA-141-70</td>
<td>Grietas por fatiga y/o creep crack growth</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Inspección por partículas magnéticas de soldaduras exteriores e interiores de las conexiones entre el domo y los tubos espaciadores o “Spacer Tubes” de los sobrecalentadores.</td>
<td>“Spacer Tubes” (zona ST)</td>
<td>50% PM</td>
<td>CA-141-70</td>
<td>Grietas por fatiga y/o creep crack growth</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Inspección visual de las conexiones entre el domo y la tubería de techo o “Roof tubes”</td>
<td>“Roof Tubes” (fila 25 y 26)</td>
<td>25% IV</td>
<td>CA-141-70</td>
<td>Grietas por fatiga y/o creep crack growth</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Inspección visual de las conexiones entre el domo y los tubos de pantalla o “Screen tubes”</td>
<td>“Screen Tubes” (fila 27 y 28)</td>
<td>25% IV</td>
<td>CA-141-70</td>
<td>Grietas por fatiga y/o creep crack growth</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Inspección visual de las conexiones entre el domo y los “Riser Tubes”</td>
<td>“Risers” (fila 29 y 30)</td>
<td>25% IV</td>
<td>CA-141-70</td>
<td>Grietas por fatiga y/o creep crack growth</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Inspección por partículas magnéticas de puertas de acceso y/o zonas de cierre.</td>
<td>Manhole cabeza derecha (M1) Manhole cabeza izquierda (M2)</td>
<td>50% PM</td>
<td>CA-141-70</td>
<td>Grietas por fatiga y/o creep crack growth</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Inspección por partículas magnéticas de soldaduras de cierre o borde de penetración de pequeñas conexiones.</td>
<td>Conexiones de: Indicadores de nivel (LI 1 a LI 8), inyección química (CF), tuberías de purga (PA) y venteos (VT1 y VT2).</td>
<td>Muestre o según resultados</td>
<td>CA-141-70</td>
<td>Grietas por fatiga y/o creep crack growth</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Descripción de la tarea</td>
<td>Zona en plano</td>
<td>Alcance</td>
<td>END</td>
<td>Plano no.</td>
<td>Mecanismo de falla</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>---------</td>
<td>-----</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>Inspección por partículas magnéticas de soldaduras circunferenciales de unión a fondos derecho e izquierdo.</td>
<td>Soldaduras circunferenciales (SC1 y SC2)</td>
<td>50%</td>
<td>PM</td>
<td>CA-141-70</td>
<td>Agrietamientos por corrosión-fatiga</td>
</tr>
<tr>
<td>14</td>
<td>Inspección por partículas magnéticas de soldaduras longitudinales.</td>
<td>Soldaduras longitudinales (SL1 y SL2)</td>
<td>50%</td>
<td>PM</td>
<td>CA-141-70</td>
<td>Agrietamientos por corrosión-fatiga</td>
</tr>
<tr>
<td>15</td>
<td>Inspección por partículas magnéticas de soportes y accesorios soldados al domo</td>
<td>Soportes del domo (SS1 y SS2)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-70</td>
<td>Agrietamientos por corrosión-fatiga</td>
</tr>
</tbody>
</table>

Recomendaciones:

- En caso de encontrar cualquier indicación en las soldaduras del cuerpo:
 - Evaluación por medio de UT-Phased Array del exterior del domo; si se determina, debido a defectos encontrados y/o a eventos operativos que se consideraron perjudiciales para el domo, se debe programar una inspección posterior con el retiro de los componentes internos del domo para realizar una inspección más completa.

7.4.2. Tuberías del banco principal

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual externa de los tubos del banco</td>
<td>Tubos del banco (fila 1 a la fila 12 por la izquierda, fila 13, fila 14, fila 3 a la fila 12 por la derecha; hileras 1 a la 81)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-83</td>
<td>Deterioro del estado general de los componentes externos por problemas de corrosión ácida debido a condensaciones, zonas erosionadas y agrietamientos.</td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual externa de zonas de influencia de los sopladores</td>
<td>Zonas de influencia de los sopladores (zonas cercanas a SB1, SB2, SB4 Y SB4)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-83</td>
<td>Deterioro del estado general de los componentes externos por problemas de corrosión ácida debido a condensaciones, zonas erosionadas y agrietamientos.</td>
</tr>
<tr>
<td>#</td>
<td>Descripción</td>
<td>Zonas/Componentes</td>
<td>Porcentaje</td>
<td>IV</td>
<td>CA-141-83</td>
<td>Observaciones</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------------</td>
<td>-------------------------------------</td>
<td>------------</td>
<td>-----</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>Inspección visual externa de curvas inferiores y superiores del banco de convección</td>
<td>Curvas inferiores (zona LCI y LCE)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-83</td>
<td>Deterioro del estado general de los componentes externos por problemas de corrosión ácida debido a condensaciones, zonas erosionadas y agrietamientos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curvas superiores (zona SCI y SCE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inspección visual externa de conexiones con el domo inferior y superior.</td>
<td>Conexión entre el domo superior y banco (zona SD)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-83</td>
<td>Deterioro del estado general de los componentes externos por problemas de corrosión ácida debido a condensaciones, zonas erosionadas y agrietamientos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conexión entre el domo inferior y banco (zona LD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inspección visual interna de los tubos del banco</td>
<td>Tubos del banco (fila 1 a la fila 12 por la izquierda, fila 13, fila 14, fila 3 a la fila 12 por la derecha; hileras 1 a la 81)</td>
<td>50%</td>
<td>IV</td>
<td>CA-141-83</td>
<td>Incrustaciones y sedimentación.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zonas de influencia de los sopladones (zonas cercanas a SB1 y SB2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Medición de espesores por ultrasonido de las tuberías erosionadas por la ceniza o daños por los sopladores rotativos, detectando pérdidas de espesor por erosión.</td>
<td>Según IV externa</td>
<td>IV (e)</td>
<td></td>
<td>CA-141-83</td>
<td>Grietas por fatiga y/o creep crack growth</td>
</tr>
<tr>
<td>7</td>
<td>Medición de espesores por ultrasonido con barrido (con posibilidad de uso de EMAT, IRIS o RFT) a las curvas inferiores y superiores accesibles del banco principal del lado agua-vapor. Apoyar con inspección visual endoscópica.</td>
<td>Curvas inferiores (zona LCI y LCE)</td>
<td></td>
<td>UT (e)</td>
<td>CA-141-83</td>
<td>Pérdidas de espesor por erosión y/o corrosión, con especial atención a problemas producidos por corrosión bajo depósitos, “Steam Blanketing”, corrosión cáustica, ácida, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curvas superiores (zona SCI y SCE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muestreo según accesibles EMAT/IRIS/RFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Inspección por partículas magnéticas en soldaduras entre tubos y domos (en los casos en que se haya aplicado), y en aquellos casos en que se encuentren tubos taponados</td>
<td>Tubos taponados del banco.</td>
<td>Muestreo según accesibles</td>
<td>PM</td>
<td>CA-141-83</td>
<td>Histórico de tubos taponados del banco.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fisuras por fatiga</td>
</tr>
</tbody>
</table>
Para las paredes refractarias laterales del banco de convección, las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual externa general de baldosas y concreto refractario.</td>
<td>Baldosas refractarias (BR) y concreto refractario (CR)</td>
<td>50%</td>
<td>IV</td>
<td>4160-05-02-0001</td>
<td>Daños en el refractario</td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual de las láminas metálicas, las barras de soporte y el estado de sus soldaduras.</td>
<td>Barras y placas de soporte (SBa y SBB)</td>
<td>25%</td>
<td>IV</td>
<td>4160-05-02-0001</td>
<td>Daños en las láminas y las placas.</td>
</tr>
</tbody>
</table>

Para las tolvas del banco de convección, las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual de las paredes metálicas.</td>
<td>Paredes metálicas de la tolva (HSW)</td>
<td>100%</td>
<td>IV</td>
<td>4160-05-02-0001</td>
<td>Grietas, deformación y/o corrosión.</td>
</tr>
<tr>
<td>2</td>
<td>Control de las soldaduras entre la tolva y la estructura de la caldera.</td>
<td>-</td>
<td>25%</td>
<td>IV</td>
<td>4160-05-02-0001</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Inspección visual de las placas.</td>
<td>Placas de la tolva (PT)</td>
<td>100%</td>
<td>IV</td>
<td>4160-05-02-0001</td>
<td>Deformación permanente o fisuras</td>
</tr>
<tr>
<td>4</td>
<td>Inspección visual de la estructura de la tolva y de los refuerzos, con atención a pernos de anclaje que se aprecien rotos, que no estén o que estén sueltos.</td>
<td>Estructura de la tolva (ET)</td>
<td>100%</td>
<td>IV</td>
<td>4160-05-02-0001</td>
<td>Deformaciones, deflexiones o fisuras sobre los soportes o en soldaduras</td>
</tr>
</tbody>
</table>

7.4.3. **Domo inferior**

Las inspecciones que se deben realizar son:
<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual interna y externa del domo inferior. Observar estado del domo desde el punto de vista de lodos.</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-71</td>
<td>Corrosión, agrietamientos, taponamientos por acumulación de lodos.</td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual interior de las toberas de los Downcomers.</td>
<td>Toberas de los Downcomers (D1 y D2)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-71</td>
<td>Corrosión por pitting, corrosión por errores en la dosificación química, agrietamientos por corrosión-fatiga y signos de daño.</td>
</tr>
<tr>
<td>3</td>
<td>Inspección por partículas magnéticas de las soldaduras de conexiones con downcomers por el interior y soldaduras de la conexión entre la tobera y downcomer por el exterior.</td>
<td>Soldaduras de conexiones con downcomers por el interior (SD1a y SD1b)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-71</td>
<td>Grietas de fatiga.</td>
</tr>
<tr>
<td>4</td>
<td>Inspección por partículas magnéticas de las soldaduras circunferenciales de unión a fondos derecho e izquierdo.</td>
<td>Soldaduras circunferenciales (SC1 y SC2)</td>
<td>50%</td>
<td>PM</td>
<td>CA-141-71</td>
<td>Agrietamientos por corrosión-fatiga</td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas de las soldaduras longitudinales.</td>
<td>Soldaduras longitudinales (SL1 y SL2)</td>
<td>50%</td>
<td>PM</td>
<td>CA-141-71</td>
<td>Agrietamientos por corrosión-fatiga</td>
</tr>
<tr>
<td>6</td>
<td>Inspección por partículas magnéticas de puertas de acceso y/o zonas de cierre.</td>
<td>Manhole derecho (M1)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-71</td>
<td>Grietas por fatiga y/o creep crack growth</td>
</tr>
<tr>
<td>7</td>
<td>Inspección por partículas magnéticas de puertas de soldaduras de cierre o borde de penetración de pequeñas conexiones como las de ensayos y llenado.</td>
<td>Conexiones para ensayos y llenado (STF)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-71</td>
<td>Grietas por fatiga y/o creep crack growth</td>
</tr>
</tbody>
</table>
Recomendaciones:

- En caso de encontrar cualquier indicación en las soldaduras del cuerpo:
 o Evaluación por medio de UT-Phased Array del exterior del domo; si se determina, debido a defectos encontrados y/o a eventos operativos que se consideraron perjudiciales para el domo, se debe programar una inspección posterior con el retiro de los componentes internos del domo para realizar una inspección más completa.

7.4.4. Downcomer Tubes

Las inspecciones que se deben realizar en los downcomers son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual externa de los downcomers.</td>
<td></td>
<td>100%</td>
<td>IV</td>
<td>CA-141-89-89</td>
<td>Deformaciones, movimiento en soportes y otras anomalías.</td>
</tr>
<tr>
<td>2</td>
<td>Inspección por partículas magnéticas de soldaduras circunferenciales.</td>
<td>Soldaduras circunferenciales (SC1 y SC2)</td>
<td>50%</td>
<td>PM</td>
<td>CA-141-89-89</td>
<td>Agrietamientos del tipo Creep Crack Growth y/o fatiga.</td>
</tr>
<tr>
<td>3</td>
<td>Inspección por partículas magnéticas de soldadura de unión entre el downcomer y el colector.</td>
<td>Soldadura de unión entre el downcomer y el colector (SM)</td>
<td>50%</td>
<td>PM</td>
<td>CA-141-89-89</td>
<td>Agrietamientos del tipo Creep Crack Growth y/o fatiga.</td>
</tr>
<tr>
<td>4</td>
<td>Inspección por partículas magnéticas de soldadura de unión entre colector y tapones de inspección.</td>
<td>Soldadura de unión entre colector y tapones de inspección (SP)</td>
<td>50%</td>
<td>PM</td>
<td>CA-141-89-89</td>
<td>Agrietamientos del tipo Creep Crack Growth y/o fatiga.</td>
</tr>
</tbody>
</table>
5 Inspección por partículas magnéticas de soldadura de unión entre colector y la cabeza del colector. Soldadura de unión entre colector y la cabeza del colector (SH) 50% PM CA-141-89- A Agrietamientos del tipo Creep Crack Growth y/o fatiga.

6 Inspección por partículas magnéticas de soldaduras entre la cabeza del colector y conexión de drenaje. Soldadura entre cabeza del colector y conexión de drenaje (DR) 50% PM CA-141-89- A Agrietamientos del tipo Creep Crack Growth y/o fatiga.

7 Inspección por partículas magnéticas de soldaduras de conexión de feeders a colector. Soldaduras de conexión de feeders a colector (fila A a fila S, hilera 1 a la 5). 25% PM CA-141-89- A Agrietamientos del tipo Creep Crack Growth y/o fatiga.

7.4.5. Feeder Tubes

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>FEEDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

7.4.6. Colectores inferiores de paredes de agua frontales y traseros

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>CABEZALES INFERIORES DE PAREDES DE AGUA FRONTAL Y TRASEROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
</tbody>
</table>

(1) Codo de radio largo: el radio de curvatura (dimensión de centro a cara) equivale a 1.5 veces el diámetro nominal.

(2) La fibra neutra coincide con el centro de gravedad del codo.
<table>
<thead>
<tr>
<th>Núm.</th>
<th>Descripción</th>
<th>Muestra</th>
<th>%</th>
<th>Nivel</th>
<th>Establecimiento</th>
<th>Descripción del Problema</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual externa del conjunto de colectores inferiores de paredes de agua frontales y traseros.</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-81-0</td>
<td>Deformaciones, roturas</td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual del estado de las soldaduras de soporte de los colectores inferiores de paredes de agua frontales y traseros.</td>
<td>Soldaduras de soportes (SS)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-81-0</td>
<td>Fisuras</td>
</tr>
<tr>
<td>3</td>
<td>Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua frontales y traseros con los feeders</td>
<td>Soldaduras entre colectores inferiores de paredes de agua y feeders (SF1 a SF20)</td>
<td>15%</td>
<td>PM</td>
<td>CA-141-81-0</td>
<td>Agrietamientos por fatiga y/o Creep Crack Growth.</td>
</tr>
<tr>
<td>4</td>
<td>Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua frontales y traseros con los tubos de las paredes de agua.</td>
<td>Soldaduras entre colectores inferiores de paredes de agua y los tubos de las paredes de agua (SW1 a SW110)</td>
<td>25%</td>
<td>PM</td>
<td>CA-141-81-0</td>
<td>Agrietamientos por fatiga y/o Creep Crack Growth.</td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua frontales y traseros con los tapones de inspección (SP)</td>
<td>Soldaduras entre colectores inferiores de paredes de agua y tapones de inspección (SP1 y SP2)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-81-0</td>
<td>Agrietamientos por fatiga y/o Creep Crack Growth.</td>
</tr>
<tr>
<td>6</td>
<td>Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua frontales y traseros con la conexión de drenaje.</td>
<td>Soldaduras entre colectores inferiores de paredes de agua y conexión de drenaje (SD)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-81-0</td>
<td>Agrietamientos por fatiga y/o Creep Crack Growth.</td>
</tr>
<tr>
<td>7</td>
<td>Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua frontales y traseros con la conexión de limpieza.</td>
<td>Soldaduras entre colectores inferiores de paredes de agua y conexión de limpieza (SA)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-81-0</td>
<td>Agrietamientos por fatiga y/o Creep Crack Growth.</td>
</tr>
</tbody>
</table>
8. Inspección por partículas magnéticas y UT-Phased Array en las soldaduras entre los colectores inferiores de paredes de agua frontales y traseros y las cabezas de los colectores (SH1 y SH2)
Soldaduras entre colectores inferiores de paredes de agua y las cabezas de los colectores (SH1 y SH2)
PM
100%
PM
100%
UT-Phased Array
UT-Phased Array
Agrietamientos por fatiga y/o Creep Crack Growth.

9. Inspección por partículas magnéticas y UT-Phased Array de soldaduras circunferenciales de los colectores inferiores de paredes de agua frontales y traseros.
Soldadura circunferencial (SC)
PM
100%
PM
100%
UT-Phased Array
UT-Phased Array
Agrietamientos del tipo Creep Crack Growth y/o fatiga.

10. Inspección endoscópica de un colector inferior frontal entrando por un tubo de drenaje o tapón de inspección. Observar estado de los colectores desde el punto de vista de lodos.
-
100%
IV (e)
Corrosión por picaduras y posibles agrietamientos en orificios y ligamentos.

7.4.7. **Colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero)**

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual externa del conjunto de colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero)</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-82 (frontal) CA-141-82- A (central) CA-141-82- B (trasero)</td>
<td>Deformaciones, roturas</td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual del estado de las soldaduras de soportes y lugs(^{(5)}) de soporte a los colectores inferiores de paredes de agua laterales (panel central).</td>
<td>Soldaduras a soporte de lámina de goteo (SS)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-82- A (central)</td>
<td>Fisuras</td>
</tr>
</tbody>
</table>

\(^{(5)}\) También conocidas como “orejas”.

Página 19 de 50

<table>
<thead>
<tr>
<th>3</th>
<th>Inspección visual de las zonas afectadas por el cenicero en los colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero)</th>
<th>Soldaduras de lugs de soporte (SL1 y SL)</th>
<th>-</th>
<th>100%</th>
<th>IV</th>
<th>CA-141-82 (frontal)</th>
<th>CA-141-82 (central)</th>
<th>CA-141-82 (trasero)</th>
<th>Posibles erosiones por acción de la ceniza o limpieza de escorias</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero) con los feeders</td>
<td>Soldaduras entre colectores inferiores de paredes de agua y feeders (Panel frontal: SF1 a SF4 Panel central: SF5 a SF9 Panel trasero: SF10 a SF13)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-82 (frontal)</td>
<td>CA-141-82 (central)</td>
<td>CA-141-82 (trasero)</td>
<td>Agrietamientos por fatiga y/o Creep Crack Growth.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero) con los tubos de las paredes de agua</td>
<td>Soldaduras entre colectores inferiores de paredes de agua y los tubos de las paredes de agua (Panel frontal: SWi, 25 filas de tubos Panel central: SWi, 32 filas de tubos Panel trasero: SWi, 25 filas de tubos)</td>
<td>25%</td>
<td>PM</td>
<td>CA-141-82 (frontal)</td>
<td>CA-141-82 (central)</td>
<td>CA-141-82 (trasero)</td>
<td>Agrietamientos por fatiga y/o Creep Crack Growth.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero) con los tapones de inspección.</td>
<td>Soldaduras entre colectores inferiores de paredes de agua y tapones de inspección (Panel frontal: SPI 1 y SPI 2 Panel central: SPI 3 Panel trasero: SPI 4 y SPI 5)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-82 (frontal)</td>
<td>CA-141-82 (central)</td>
<td>CA-141-82 (trasero)</td>
<td>Agrietamientos por fatiga y/o Creep Crack Growth.</td>
<td></td>
</tr>
</tbody>
</table>
Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero) con la conexión de drenaje.

Soldaduras entre colectores inferiores de paredes de agua y conexión de drenaje (Panel frontal: SD1 Panel central: SD2 a SD5 Panel trasero: SD6) 100% PM CA-141-82 (frontal) CA-141-82- Δ (central) CA-141-82- R (trasero) Agrietamientos por fatiga y/o Creep Crack Growth.

Inspección por partículas magnéticas en las soldaduras entre el colector inferior de paredes de agua laterales del panel central con la conexión de limpieza.

Soldaduras entre colectores inferiores de paredes de agua y conexión de limpieza (SA) 100% PM CA-141-82- Δ (central) Agrietamientos por fatiga y/o Creep Crack Growth.

Inspección por partículas magnéticas y UT-Phased Array en las soldaduras entre los colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero) y las cabezas (tapas) de los colectores.

Soldaduras entre colectores inferiores de paredes de agua y las cabezas de los colectores (SH1 y SH2) 100% PM UT-Phased Array CA-141-82 (frontal) CA-141-82- Δ (central) CA-141-82- R (trasero) Agrietamientos por fatiga y/o Creep Crack Growth.

Inspección endoscópica de los colectores inferiores laterales entrando por un tubo de drenaje o tapón de inspección. Observar estado de los colectores desde el punto de vista de lodos.

- 100% IV (e) CA-141-82 (frontal) CA-141-82- Δ (central) CA-141-82- R (trasero) Corrosión por picaduras y posibles agrietamientos en orificios y ligamentos.

7.4.8. Paredes de agua

Las inspecciones para la pared de agua frontal que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual del conjunto de la pared de agua frontal (paneles intermedios e inferiores izquierdo, central y derecho), con especial atención a la zona de los quemadores.</td>
<td>Zona de los quemadores (AQ1 a AQ6) Tubos de la pared de agua frontal del panel intermedio/</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-80-A (intermedios)</td>
<td>Zonas críticas desde el punto de vista de erosión y corrosión por el lado del fuego (fenómenos de corrosión por oxidación en caliente).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CA-141-80- (inferiores)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CA-141-141-80- (intermedios)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CA-141-141-80- (inferiores)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CA-141-82 (frontal)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CA-141-82- Δ (central)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CA-141-82- R (trasero)</td>
<td></td>
</tr>
</tbody>
</table>

Página 21 de 50
<table>
<thead>
<tr>
<th>Nivel</th>
<th>Descripción</th>
<th>Zonas y Filas de Tubos</th>
<th>Métodos de Inspección</th>
<th>Perfiles de Tubos</th>
<th>Pérdidas y Daños</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Inspección visual del conjunto de la pared de agua frontal (paneles superiores derecho, central e izquierdo). Investigar puntos singulares donde se presente una ovalización marcada o bordes sobre la superficie exterior de la tubería.</td>
<td>Inferior derecho (zonas RFW, 42 filas de tubos), Tubos de la pared de agua frontal del panel intermedio/inferior central (zonas CFW, 26 filas de tubos), Tubos de la pared de agua frontal del panel intermedio/inferior izquierdo (zonas LFW, 42 filas de tubos)</td>
<td>CA-141-80-F (superior derecho/izquierdo), CA-141-80-C (superior centrales)</td>
<td>100%</td>
<td>Erosión/Corrosión, Agrietamientos por fatiga, Pandeos, deflexiones o abolladuras.</td>
</tr>
<tr>
<td>3</td>
<td>Medición de espesores en los tubos erosionados de la pared de agua frontal (paneles inferiores e intermedios derecho, central e izquierdo) a la altura de los quemadores y por encima de los mismos (1.5 m del último quemador – EL. 66° 7/8”). Ver posibilidad de uso de EMAT para detectar posibles pérdidas por corrosión interna</td>
<td>Tubos erosionados de la pared de agua frontal (paneles inferiores e intermedios) de los niveles 1 a 4 (N1 a N4)</td>
<td>CA-141-80 (inferiores), CA-141-80-A (intermedios)</td>
<td>Según IV (e)</td>
<td>Pérdidas de espesor en zonas de erosión</td>
</tr>
<tr>
<td>4</td>
<td>Inspección por partículas magnéticas y ultrasonido de soldaduras de aletas (6) a tubos de la pared de agua frontal.</td>
<td>Soldaduras de aletas a tubos de la pared de agua frontal (paneles intermedios e inferiores y superiores) (SFN)</td>
<td>CA-141-80 (inferiores), CA-141-80-A (intermedios), CA-141-80-E (superior derecho/izquierdo), CA-141-80-F (superior centrales)</td>
<td>Maestro</td>
<td>Agrietamientos por fatiga</td>
</tr>
</tbody>
</table>

(6) También conocidas como membranas
<table>
<thead>
<tr>
<th></th>
<th>Inspección por partículas magnéticas de soldaduras de soportes y accesorios soldados de la pared de agua frontal.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soldaduras de barras a tubos de la pared de agua frontal (paneles intermedios) (SBT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soldaduras de vigas a tubos de la pared de agua frontal (paneles intermedios) (SV) y soldaduras entre las vigas y bandas (SBD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soldaduras de lugs de soportes a la pared de agua frontal (paneles inferiores y superiores) (SL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soldaduras de barras onduladas a tubos de la pared de agua frontal (paneles inferiores y superiores) (SSB). Soldaduras entre barras onduladas y vigas (SBV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soldaduras de placas de sello a tubos de la pared de agua frontal (paneles inferiores) (SSP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muestreo</td>
<td>PM</td>
<td>Agrietamientos por fatiga</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>CA-141-80 (inferiores)</td>
<td>CA-141-80-A (intermedios)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-141-80-E (superior derecho/izquierdo)</td>
<td>CA-141-80-F (superior central)</td>
</tr>
</tbody>
</table>

	Realización de réplicas metalográficas en tubos que la inspección visual haya podido detectar anomalías en la coloración por acercamiento de la llama, inflamientos, etc.		
		Según IV	RM
6		CA-141-80 (inferiores)	CA-141-80-A (intermedios)
		CA-141-80-E (superior derecho/izquierdo)	CA-141-80-F (superior central)
		Agrietamientos por corrosión y/o fatiga	
Tomar una muestra de la tubería que se aprecie dañada para llevar a cabo una evaluación de falla mecánica

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual de la integridad del material refractario y las varillas que soportan la fundición</td>
<td>-</td>
<td>50%</td>
<td>IV</td>
<td>CA-141-80-A (intermedios)</td>
<td>Deformaciones, daños en el refractario y varillas.</td>
</tr>
<tr>
<td>2</td>
<td>Replica metalográfica en los primeros tubos cercanos a los quemadores. Realizar únicamente si se percibe daño en el refractario cerca a los quemadores.</td>
<td>-</td>
<td>50%</td>
<td>RM</td>
<td>CA-141-80-A (intermedios)</td>
<td>Daño por Creep</td>
</tr>
</tbody>
</table>

Para los tubos de garganta de quemadores, las inspecciones que se deben realizar son:

GARGANTA DE LOS QUEMADORES

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual del conjunto de la pared de agua lateral (paneles frontal, central y posterior) con especial atención a tubos posiblemente afectados por sopladores y quemadores de la pared frontal. Investigar puntos particulares donde se presente una ovalización marcada o bordes sobre la superficie exterior de la tubería</td>
<td>Zona de los sopladores (Panel frontal: WB1 a WB4 Panel central: WB5 y WB6 Panel trasero: WB7 a WB9) Tubos de la pared de agua lateral del panel frontal (zona SW(f), 25 filas de tubos)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-82 (frontal) CA-141-82-A (central) CA-141-82-B (trasero)</td>
<td>Zonas críticas desde el punto de vista de erosión y corrosión. Pandeos, deflexiones o abolladuras.</td>
</tr>
</tbody>
</table>

Las inspecciones para la pared de agua lateral que se deben realizar son:

PARED DE AGUA LATERAL
<table>
<thead>
<tr>
<th></th>
<th>Tubos de la pared de agua lateral del panel central (zona SW(c), 32 filas de tubos)</th>
<th>Tubos de la pared de agua lateral del panel trasero (zona SW(t), 25 filas de tubos)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Inspección visual del conjunto de la pared de agua lateral (paneles frontal, central y posterior) en la zona de sopladores. Investigar puntos particularidades donde se presente una ovalización marcada o bordes sobre la superficie exterior de la tubería Ampliar a inspección por partículas magnéticas si se detectan indicios de agrietamientos.</td>
<td>Tubos erosionados de la pared de agua lateral del panel frontal (niveles N1 a N4)</td>
<td>Según IV PM CA-141-82 (frontal) CA-141-82-A (central) CA-141-82-B (trasero)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubos erosionados de la pared de agua lateral del panel frontal (niveles N5 y N6)</td>
<td>Erosiones en zonas de sopladores y agrietamientos en final de aletas (en estas mismas zonas). Grietas de fatiga térmica en tubos próximos a sopladores. Pérdida de espesor en zonas erosionadas por los sopladores. Fenómenos de corrosión por oxidación en caliente.</td>
</tr>
<tr>
<td>3</td>
<td>Medición de espesores en los tubos erosionados de la pared de agua lateral (paneles frontal, central y posterior) a la altura de los quemadores y por encima de los mismos (1.5 m del último quemador). Ver posibilidad de uso de EMAT para detectar posibles pérdidas por corrosión interna</td>
<td>Tubos afectados por el primer nivel de quemadores: (Tubos del nivel NQ 1, Elev. 40° 3")</td>
<td>Según IV UT (e) CA-141-82 (frontal) CA-141-82-A (central) CA-141-82-B (trasero)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubos afectados por el segundo nivel de quemadores: (Tubos del nivel NQ 2, Elev. 48° 3")</td>
<td>Pérdidas de espesor en zonas de erosión</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubos afectados por el tercer nivel de quemadores: (Tubos del nivel NQ 3, Elev. 56° 3")</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubos afectados por el cuarto nivel</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inspección visual de aperturas de puertas de inspección (Manholes), sopladores, mirillas y termopares de la pared de agua lateral (paneles frontal, central y trasero).</td>
<td>Panel frontal: Aperturas para mirillas (OD1 a OD3) Aperturas para termopares (TP) Panel central: Apertura de puerta de inspección (M1) Panel trasero: Aperturas para mirillas (OD4 a OD6)</td>
<td>Realizar una vez. Resto función de resultados</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas y ultrasonido de soldaduras de aletas a tubos de la pared de agua lateral.</td>
<td>Soldaduras de aletas a tubos de la pared de agua lateral (SFN)</td>
<td>Muestreo</td>
</tr>
<tr>
<td>6</td>
<td>Inspección por partículas magnéticas de soldaduras de soportes y accesorios soldados de la pared de agua lateral.</td>
<td>Soldaduras de barras a tubos de la pared de agua lateral (SBT) Soldaduras de ángulos a tubos de la pared de agua lateral (SSA)</td>
<td>Muestreo</td>
</tr>
<tr>
<td>7</td>
<td>Realización de réplicas metalográficas en tubos que la inspección visual haya podido detectar anomalías en la coloración por acercamiento de la llama, inflamaciones, etc.</td>
<td>-</td>
<td>Según IV</td>
</tr>
<tr>
<td>8</td>
<td>Inspección visual de la condición de la carcasa y las láminas alrededor de las aperturas (realizar inspección por la parte exterior del hogar)</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>No.</td>
<td>Descripción de la tarea</td>
<td>Zona en plano</td>
<td>Alcance</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>9</td>
<td>Inspección visual del sellado y la soldadura de fijación del sellado (realizar inspección por la parte exterior del hogar)</td>
<td>-</td>
<td>50%</td>
</tr>
<tr>
<td>10</td>
<td>Inspección visual de la condición del refractario y las láminas de las puertas (realizar inspección por la parte exterior del hogar)</td>
<td>-</td>
<td>50%</td>
</tr>
<tr>
<td>11</td>
<td>Tomar una muestra de la tubería dañada para llevar a cabo una evaluación de falla mecánica</td>
<td>-</td>
<td>Según IV</td>
</tr>
</tbody>
</table>

Las inspecciones para la pared de agua trasera que se deben realizar son:

- Inspección visual del conjunto de la pared de agua trasera (paneles superior e inferior) con especial atención a tubos posiblemente afectados por sopladores y quemadores de la pared frontal. Investigar puntos particulares donde se presente una ovalización marcada o bordes sobre la superficie exterior de la tubería.
<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Medición de espesores en los tubos erosionados de la pared de agua trasera (paneles superior e inferior) a la altura de los quemadores y por encima de ellos (1.5 m del último quemador). Ver posibilidad de uso de EMAT para detectar posibles pérdidas por corrosión interna</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Inspección visual del conjunto de la pared de agua trasera (paneles inferiores) en la zona de sopladores. Investigar puntos singulares donde se presente una ovalización marcada o bordes sobre la superficie exterior de la tubería. Ampliar la inspección por partículas magnéticas si se detectan indicios de agrietamientos.</td>
<td>Tubos erosionados de la pared de agua lateral del panel inferior (niveles N1 a N3) According to IV PM CA-141-81-B (inferiores)</td>
</tr>
<tr>
<td>3</td>
<td>Medición de espesores en los tubos erosionados de la pared de agua trasera (paneles superior e inferior) a la altura de los quemadores y por encima de ellos (1.5 m del último quemador). Ver posibilidad de uso de EMAT para detectar posibles pérdidas por corrosión interna</td>
<td>Tubos afectados por el primer nivel de quemadores: (Tubos del nivel NQ 1, Elev. 40’ 3") Tubos afectados por el segundo nivel de quemadores: (Tubos del nivel NQ 2, Elev. 48’ 3") Tubos afectados por el tercer nivel de quemadores: (Tubos del nivel NQ 3, Elev. 56’ 3") Tubos afectados por el cuarto nivel de quemadores: (Tubos del nivel NS 4, 1,5m por encima del tercer nivel de quemadores) According to IV UT (e) CA-141-81-B (inferiores) CA-141-81-C (superiores)</td>
</tr>
<tr>
<td></td>
<td>Inspección visual de aperturas de puertas de inspección, soplores, mirillas y termopares de la pared de agua trasera (paneles superior e inferior).</td>
<td>Pared de agua trasera (panel inferior): Aperturas para mirillas (OD7 a OD9) Aperturas para detectores de llama (FD1 a FD5)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>Ampliar la inspección por partículas magnéticas si se detectan indicios de agrietamientos.</td>
<td>Realizar una vez. Resto función de resultados</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas y ultrasonido de soldaduras de aletas a tubos de la pared de agua trasera.</td>
<td>Soldaduras de aletas a tubos de la pared de agua lateral (SFN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Inspección por partículas magnéticas de soldaduras de soportes y accesorios soldados de la pared de agua trasera.</td>
<td>Soldaduras de lugs a tubos de la pared de agua lateral (SL)</td>
</tr>
<tr>
<td>7</td>
<td>Realización de réplicas metalográficas en tubos que la IV haya podido detectar anomalías en la coloración por acercamiento de la llama, inflamados, etc.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Inspección visual de la condición de la carcasa y las láminas alrededor de las aperturas (realizar inspección por la parte exterior del hogar)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Inspección visual del sellado y la soldadura de fijación del sellado (realizar inspección por la parte exterior del hogar)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Inspección visual de la condición del refractario y las láminas de las puertas (realizar inspección por la parte exterior del hogar)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Tomar una muestra de la tubería dañada para llevar a cabo una evaluación de falla mecánica</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recomendaciones:

- En caso de contaminaciones cíclicas, problemas de control de química o drenajes:
- Evaluación de posibles fisuras internas debido a fatiga por corrosión en zonas de concentración de esfuerzo por UT-Phased array o inspección visual endoscópica.

Las inspecciones a realizar para los tubos de la nariz inferior y la cámara muerta de la nariz inferior son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Zona inclinada superior de la nariz de la pared de agua frontal (NFI e) y trasera (NTI e) (total 110 tubos)</td>
<td></td>
<td></td>
<td>CA-141-110</td>
<td>Corrosión, corrosión-fatiga, erosión. Pitting.</td>
</tr>
<tr>
<td>1</td>
<td>Inspección visual del conjunto de la nariz inferior de la pared de agua frontal y trasera desde la cámara muerta de la nariz.</td>
<td>Zona curva de la nariz de la pared de agua frontal (NFC e) y trasera (NTC e) (total 110 tubos)</td>
<td>100%</td>
<td>IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verificar pandeos y desalineaciones</td>
<td>Zona horizontal inferior de la nariz de la pared de agua frontal (NFH e) y trasera (NTH e) (total 110 tubos)</td>
<td></td>
<td></td>
<td>CA-141-110</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ampliar la inspección a medición de espesores para los tubos en la curva con erosión.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Inspección visual de la zona de la nariz inferior (frontal y trasera) desde el interior de la caldera.</td>
<td>Zona inclinada superior de la nariz de la pared de agua frontal (NFI i) y trasera (NTI i) (total 110 tubos)</td>
<td></td>
<td></td>
<td>CA-141-110</td>
<td>Fisuras o corrosión</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zona curva de la nariz de la pared de agua frontal (NFC i) y trasera (NTC i) (total 110 tubos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zona horizontal inferior de la nariz de la pared de agua frontal (NFH i) y trasera (NTH i) (total 110 tubos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intersecciones con la pared lateral izquierda (SW1 y SW2)
<table>
<thead>
<tr>
<th></th>
<th>Intersecciones con la pared lateral derecha (SW3 y SW4)</th>
<th>Abolladuras o desgastes.</th>
</tr>
</thead>
</table>
| 4 | Inspección visual de las láminas, soldaduras, los perfiles rigidizadores (puntos de restricción), colgantes, etc en la zona de la cámara muerta de la nariz inferior frontal y trasera.
Identificar abrasiones, erosiones y corrosión por fugas de gases del hogar a través de fisuras o rasgaduras del sello soldado. | Elementos estructurales y sus respectivas soldaduras de la cámara muerta de la nariz inferior frontal (SSF)
Elementos estructurales y sus respectivas soldaduras de la cámara muerta de la nariz inferior frontal (SST) | 100%
IV
CA-141-110
Deformaciones.
Corrosión, corrosión-fatiga, erosión.
Pitting. |
| 5 | Inspección visual de los tubos que puedan estar dañados, doblados, deformados por algún fenómeno de expansión restringido (fisuras en las soldaduras o en correspondencia con el extremo de la membrana).
Ampliar la inspección a partículas magnéticas en caso de que se detecten agrietamientos. | -
100%
IV
CA-141-110
Pandeos, deflexiones o abolladuras. |
| 6 | Inspección por partículas magnéticas de las soldaduras de sellado entre el hogar y la cámara muerta de la nariz inferior. | -
Muestreo
PM
CA-141-110
Deformaciones.
Corrosión, corrosión-fatiga, erosión.
Pitting. |
| 7 | Verificación de las dilataciones de la caldera respecto a los puntos fijos estructurales establecidos, comparando simetrías respecto a los valores de diseño (en lo posible instalar testigos para esta inspección). | -
100%
IV -
Deformaciones. |

7.4.9. Colectores superiores de paredes laterales de agua (paneles frontal, central y trasero)

Las inspecciones que se deben realizar son:

| CABEZALES SUPERIORES DE PAREDES DE AGUA LATERALES (PANELES FRONTAL, CENTRAL Y TRASERO) |
|---|---|---|---|---|---|---|
| No. | Descripción de la tarea | Zona en plano | Alcance | END | Plano no. | Mecanismo de falla |

Página 31 de 50
<table>
<thead>
<tr>
<th></th>
<th>Inspección visual externa del conjunto de colectores superiores de paredes de agua laterales (paneles frontal, central y trasero).</th>
<th>-</th>
<th>100%</th>
<th>IV</th>
<th>Deformaciones, roturas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Inspección visual del estado de las soldaduras de vigas y lugs de soporte a los colectores superiores de paredes de agua laterales (paneles frontal, central y trasero).</td>
<td>Soldaduras de vigas (SV)</td>
<td>100%</td>
<td>IV</td>
<td>Fisuras</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soldaduras de lugs de soporte (SL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Inspección visual del estado de las soldaduras entre el colector superior de paredes de agua laterales del panel trasero con el soporte del tubo espaciador de los sobrecalentadores (STS)</td>
<td>Soldaduras de soporte de tubo espaciador de los sobrecalentadores (STS)</td>
<td>100%</td>
<td>IV</td>
<td>Fisuras</td>
</tr>
<tr>
<td>4</td>
<td>Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero) con los risers</td>
<td>Soldaduras entre colectores inferiores de paredes de agua y risers (Panel frontal: SR1 a SF4 Panel central: SR5 a SR12 Panel trasero: SR13 a SR16)</td>
<td>15%</td>
<td>PM</td>
<td>Agrietamientos por fatiga y/o Creep Crack Growth.</td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero) con los tubos de las paredes de agua</td>
<td>Soldaduras entre colectores inferiores de paredes de agua y tubos de pared de agua (Panel frontal: SWs, 25 filas de tubos Panel central: SWs, 32 filas de tubos Panel trasero: SWs, 25 filas de tubos)</td>
<td>15%</td>
<td>PM</td>
<td>Agrietamientos por fatiga y/o Creep Crack Growth.</td>
</tr>
</tbody>
</table>
6. Inspección por partículas magnéticas en las soldaduras entre los colectores inferiores de paredes de agua laterales (paneles frontal, central y trasero) con los tapones de inspección.

Soldaduras entre colectores inferiores de paredes de agua y tapones de inspección (Panel frontal: SPs 1 y SPs 2; Panel central: SPs 3; Panel trasero: SPs 4 y SPs 5)

100% PM

CA-141-82 (frontal)
CA-141-82-A (central)
CA-141-82-B (trasero)

Agrietamientos por fatiga y/o Creep Crack Growth.

7. Inspección por partículas magnéticas y UT-Phased Array en las soldaduras entre los colectores inferiores de paredes de agua frontales y traseros y las cabezas de los colectores.

Soldaduras entre colectores inferiores de paredes de agua y las cabezas de los colectores (SH3 y SH4)

100% PM UT-Phased Array

CA-141-82 (frontal)
CA-141-82-A (central)
CA-141-82-B (trasero)

Agrietamientos por fatiga y/o Creep Crack Growth.

7.4.10. Riser Tubes

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual externa del conjunto de riser tubes.</td>
<td>Conjunto de risers (fila 29 a fila 30, hilera 1 a hilera 16)</td>
<td>100%</td>
<td>IV</td>
<td>4160-02-11-0001</td>
<td>Deformaciones y anomalías.</td>
</tr>
<tr>
<td>2</td>
<td>Inspección por partículas magnéticas y medición de durezas en los codos (curvas) de radio largo de los risers.</td>
<td>Codos (curvas) de radio largo (LRE)</td>
<td>25% PM DZ</td>
<td>4160-02-11-0001</td>
<td>Grietas de Creep Crack Growth.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Inspección por ultrasonido en la zona de fibra neutra de los codos (curvas) de radio largo horizontales o con pendientes negativas de risers, que puedan ser propensas a acumular condensado.</td>
<td>Fibra neutra de codos (curvas) de radio largo (FNE)</td>
<td>15% PM</td>
<td>4160-02-11-0001</td>
<td>Grietas de Creep Crack Growth y/o corrosión fatiga.</td>
<td></td>
</tr>
</tbody>
</table>

7.4.11. Roof Tubes

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
</table>

1						
2						
3						

Página 33 de 50
<table>
<thead>
<tr>
<th>N°</th>
<th>Etapa de Inspección</th>
<th>Descripción</th>
<th>Zona a Inspeccionar</th>
<th>Medición</th>
<th>Método de Inspección</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual externa del conjunto de roof tubes (por el interior de la caldera).</td>
<td>Conjunto de roof tubes (fila 27 a fila 28, hilera 1 a hilera 110)</td>
<td></td>
<td>100%</td>
<td>IV</td>
<td>CA-141-84</td>
</tr>
<tr>
<td>2</td>
<td>Medición de espesores por ultrasonido de la zona de paso (si se encuentra erosionada) de la parte inicial del sobrecalentador primario</td>
<td>Zona de paso de la parte inicial del sobrecalentador primario (ZPSH1)</td>
<td>Según IV o 3 tubos a cada lado de cada penetración</td>
<td>UT (e)</td>
<td>CA-141-84</td>
<td>Pérdidas de espesor por erosión</td>
</tr>
<tr>
<td>3</td>
<td>Medición de espesores por ultrasonido de la zona de paso (si se encuentra erosionada) de la parte final del sobrecalentador primario</td>
<td>Zona de paso de la parte final del sobrecalentador primario (ZPSH2)</td>
<td>Según I.V. o 3 tubos a cada lado de cada penetración</td>
<td>UT (e)</td>
<td>CA-141-84</td>
<td>Pérdidas de espesor por erosión</td>
</tr>
<tr>
<td>4</td>
<td>Medición de espesores por ultrasonido de la zona de paso (si se encuentra erosionada) de la parte inicial del sobrecalentador secundario "finishing"</td>
<td>Zona de paso de la parte inicial del sobrecalentador secundario "finishing" (ZPSHF1)</td>
<td>Según I.V. o 3 tubos a cada lado de cada penetración</td>
<td>UT (e)</td>
<td>CA-141-84</td>
<td>Pérdidas de espesor por erosión</td>
</tr>
<tr>
<td>5</td>
<td>Medición de espesores por ultrasonido de la zona de paso (si se encuentra erosionada) de la parte final del sobrecalentador secundario "finishing"</td>
<td>Zona de paso de la parte final del sobrecalentador secundario "finishing" (ZPSHF2)</td>
<td>Según I.V. o 3 tubos a cada lado de cada penetración</td>
<td>UT (e)</td>
<td>CA-141-84</td>
<td>Pérdidas de espesor por erosión</td>
</tr>
<tr>
<td>6</td>
<td>Medición de espesores por ultrasonido de la zona de paso (si se encuentra erosionada) de la parte inicial del sobrecalentador secundario "platen"</td>
<td>Zona de paso de la parte inicial del sobrecalentador secundario "platen" (ZPSHP1)</td>
<td>Según I.V. o 3 tubos a cada lado de cada penetración</td>
<td>UT (e)</td>
<td>CA-141-84</td>
<td>Pérdidas de espesor por erosión</td>
</tr>
<tr>
<td>7</td>
<td>Medición de espesores por ultrasonido de la zona de paso (si se encuentra erosionada) de la parte final del sobrecalentador secundario "platen"</td>
<td>Zona de paso de la parte final del sobrecalentador secundario "platen" (ZPSHP2)</td>
<td>Según I.V. o 3 tubos a cada lado de cada penetración</td>
<td>UT (e)</td>
<td>CA-141-84</td>
<td>Pérdidas de espesor por erosión</td>
</tr>
<tr>
<td>8</td>
<td>Inspección por partículas magnéticas de soldaduras de soportes a tubos</td>
<td>Soldaduras de soportes (SS, 16 orejas de soporte)</td>
<td></td>
<td>-</td>
<td>PM</td>
<td>CA-141-84</td>
</tr>
<tr>
<td>9</td>
<td>Inspección visual de la integridad de las aletas del sistema de sellado.</td>
<td>Aletas (FN)</td>
<td></td>
<td>15%</td>
<td>IV</td>
<td>CA-141-84</td>
</tr>
</tbody>
</table>
7.4.12. Screen Tubes

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual externa del conjunto de screen tubes.</td>
<td>Conjunto de screen tubes (fila 25 a fila 26, hilera 1 a hilera 110)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-81-D</td>
<td>Zonas erosionadas y con posibles agrietamientos. Deformaciones e irregularidades geométricas de las tuberías</td>
</tr>
<tr>
<td>2</td>
<td>Inspección por partículas magnéticas de soldaduras de soportes a tubos</td>
<td>Soldaduras de barras onduladas a tubos de pantalla (SSB) y Soldaduras de lugs de soportes a los tubos de pantalla (SL)</td>
<td>Muestreo</td>
<td>PM</td>
<td>CA-141-81-D</td>
<td>Fisuras</td>
</tr>
<tr>
<td>3</td>
<td>Inspección por partículas magnéticas y ultrasonido de las soldaduras de los tubos de pantalla a aletas.</td>
<td>Soldaduras de aletas a tubos de pantalla (SFN)</td>
<td>Muestreo</td>
<td>PM</td>
<td>CA-141-81-D</td>
<td>Agrietamientos por fatiga</td>
</tr>
<tr>
<td>4</td>
<td>Inspección visual niveles 1 a 3 de las soldaduras de unión de los amarres a los tubos de los serpentines de los tubos de pantalla. Si se observan roturas que puedan afectar a tubos realizar líquidos penetrantes.</td>
<td>Soldaduras de unión de los amarres a tubos de los serpentines de los tubos de pantalla (SA, N1 a N3)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-81-D</td>
<td>Roturas, agrietamientos</td>
</tr>
</tbody>
</table>

7.4.13. Steam Supplies

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual externa del conjunto de steam supplies.</td>
<td>Conjunto de steam supplies (fila 31 afila 36)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-95</td>
<td>Deformaciones y anomalías.</td>
</tr>
</tbody>
</table>
Si se observan roturas que puedan afectar a tubos realizar líquidos penetrantes.

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual del conjunto del sobrecalentador primario, especialmente a las parrillas contiguas a las paredes laterales (26 parrillas). Inspección visual de los tubos en la zona de cruces a través del techo de la caldera.</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-93-1</td>
<td>Zonas con problemas de erosión por gases.</td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual niveles 1 a 5 de las soldaduras de unión de los amarres (espaciadores) y patines (espaciadores deslizantes) a los tubos de los serpentines del sobrecalentador primario. Si se observan roturas que puedan afectar a tubos realizar líquidos penetrantes,</td>
<td>Soldaduras de unión de los amarres a tubos de los serpentines del sobrecalentador primario (SA1 y SA2, nivel 1 a 6)</td>
<td>100%</td>
<td>IV (LP)</td>
<td>CA-141-93-1</td>
<td>Roturas, agrietamientos</td>
</tr>
<tr>
<td>3</td>
<td>Inspección visual a zonas de influencia de los sopladores rotativos en los serpentines del sobrecalentador primario. Realizar medición de espesores por ultrasonido solo a zonas erosionadas.</td>
<td>Zonas de influencia de los sopladores rotativos (N1: elev. 88’3” N2: elev. 91’ 3” N3: elev. 100’ N4: elev. 101’ 3”))</td>
<td>100%</td>
<td>IV UT (e)</td>
<td>CA-141-93-1</td>
<td>Erosión por sopladores. Reducción de espesor producido en zonas con posible erosión.</td>
</tr>
</tbody>
</table>
7.4.15. **Colector salida de sobrecalentador primario**

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual del conjunto del colector de salida del sobrecalentador primario y los tubos de conexión o "Stub tubes".</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-96</td>
<td>Roturas, deformaciones y corrosión</td>
</tr>
<tr>
<td>2</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión entre el colector de salida del sobrecalentador primario y tubos del sobrecalentador primario.</td>
<td>Soldaduras de conexión entre el colector de salida del sobrecalentador primario y tubos del sobrecalentador primario (S1.1 a S1.12, S2.1 a S2.13, S3.1 a S3.14, S4.1 a S4.14 y S5)</td>
<td>25%</td>
<td>PM</td>
<td>CA-141-96</td>
<td>Agrietamientos por fatiga</td>
</tr>
<tr>
<td>3</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión entre el colector de salida</td>
<td>Soldaduras de conexión entre el colector de salida</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-96</td>
<td>Agrietamientos por fatiga</td>
</tr>
</tbody>
</table>

(7) Tramo de longitud según la norma o procedimiento (aprox. 60cm).
<table>
<thead>
<tr>
<th></th>
<th>del sobrecalentador primario y el tubo espaciador.</th>
<th>del sobrecalentador primario y el tubo espaciador (SST1 a SST13)</th>
<th>100%</th>
<th>PM</th>
<th>CA-141-96</th>
<th>Agrietamientos por fatiga</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión entre el colector de salida del sobrecalentador primario y tapones de inspección.</td>
<td>Soldaduras de conexión entre el colector de salida del sobrecalentador primario y tapones de inspección (SPI y SP2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas a soldaduras entre el colector de salida del sobrecalentador primario y conexión con sopladores rotativos.</td>
<td>Soldaduras de conexión entre el colector de salida del sobrecalentador primario y conexión con sopladores rotativos (SSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Inspección por partículas magnéticas y UT-Phased Array a soldaduras del codo de conexión entre el colector de salida del sobrecalentador primario y la tubería de transferencia (atemperación).</td>
<td>Soldaduras del codo de conexión entre el colector de salida del sobrecalentador primario y el colector de transferencia (ST1 y ST2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Inspección por partículas magnéticas y UT-Phased Array a soldaduras circunferenciales del colector.</td>
<td>Soldaduras circulares del colector (SC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Inspección por partículas magnéticas y UT-Phased Array a soldaduras entre el colector de salida del sobrecalentador primario y la cabeza del colector.</td>
<td>Soldaduras entre el colector de salida del sobrecalentador primario y la cabeza del colector (SH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Realización de réplicas metalográficas en ZAT de soldaduras del codo de conexión entre el colector de salida del sobrecalentador primario y la tubería de transferencia (atemperación) y de la cabeza del colector.</td>
<td>Zona R1 y R2</td>
<td></td>
<td></td>
<td></td>
<td>Daño por cavidades o envejecimiento estructural</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Página 38 de 50
Realización de réplicas metalográficas en ZAT de soldaduras entre el colector de salida del sobrecalentador primario y la cabeza del colector.
Zona R3 y R4
100% RM CA-141-96
Daño por cavidades o envejecimiento estructural

7.4.16. **Tubería de Transferencia (atemperación)**

Las inspecciones que se deben realizar son:

Tubería de transferencia (atemperación)

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual de la tubería de transferencia (atemperación).</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-99</td>
<td>Deformaciones, anomalías</td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual endoscópica de la camisa de la tubería de transferencia (atemperación).</td>
<td>Camisa de la tubería de transferencia (atemperación) (CTA)</td>
<td>100%</td>
<td>IV (e)</td>
<td>CA-141-99</td>
<td>Agrietamientos por fatiga térmica en la camisa del atemperador</td>
</tr>
<tr>
<td>3</td>
<td>Inspección por líquidos penetrantes de las soldaduras de la boquilla de flujo.</td>
<td>Soldaduras de la boquilla de flujo (SN1 y SN2)</td>
<td>100%</td>
<td>LP</td>
<td>CA-141-99</td>
<td>Agrietamientos por fatiga térmica</td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas de las soldaduras de la brida de la tubería de transferencia (atemperación).</td>
<td>Soldaduras de la brida de la tubería de transferencia (atemperación) (SB)</td>
<td>100%</td>
<td>LP PM</td>
<td>CA-141-99</td>
<td>Posible presencia de agrietamientos</td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas o líquidos penetrantes de las soldaduras de sellado de los tornillos de centrado de la camisa.</td>
<td>Soldaduras de sellado de los tornillos de centrado de la camisa (ST1.1 a ST1.3, ST2.1 a ST2.3, ST3.1 a ST3.3)</td>
<td>100%</td>
<td>LP PM</td>
<td>CA-141-99</td>
<td>Posible presencia de agrietamientos</td>
</tr>
<tr>
<td>6</td>
<td>Inspección por partículas magnéticas a la soldadura de la conexión de termopozos.</td>
<td>Soldadura de la conexión de termopozos (STP1 y STP2)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-99</td>
<td>Fisuras debido a fatiga o Creep</td>
</tr>
<tr>
<td>7</td>
<td>Inspección por partículas magnéticas a la soldadura de la conexión de drenaje.</td>
<td>Soldadura de la conexión de drenaje (SD)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-99</td>
<td>Fisuras debido a fatiga o Creep</td>
</tr>
<tr>
<td>8</td>
<td>Inspección por ultrasonido en direcciones circular y axial con palpador angular. Realizar solo si la camisa presenta roturas.</td>
<td>-</td>
<td>100%</td>
<td>(UT)</td>
<td>CA-141-99</td>
<td>Agrietamientos de fatiga en la superficie externa de la tubería en la zona de acción del atemperador</td>
</tr>
</tbody>
</table>
7.4.17. **Colector de entrada del sobrecalentador secundario**

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual del conjunto del colector de entrada del sobrecalentador secundario y los tubos de conexión o "Stub tubes".</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-98</td>
<td>Roturas, deformaciones y corrosión</td>
</tr>
<tr>
<td>2</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión entre el colector de entrada del sobrecalentador secundario y tubos del sobrecalentador secundario.</td>
<td>Soldaduras de conexión entre el colector de entrada del sobrecalentador secundario y tubos del sobrecalentador secundario (S1.1 a S1.13, S2.1 a S2.13, S3.1 a S3.13 y S4.1 a S4.13)</td>
<td>50%</td>
<td>PM</td>
<td>CA-141-98</td>
<td>Agrietamientos por fatiga</td>
</tr>
<tr>
<td>3</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión entre el colector de entrada del sobrecalentador secundario y tapones de inspección.</td>
<td>Soldaduras de conexión entre el colector de entrada del sobrecalentador secundario y tapones de inspección (SP1 y SP2)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-98</td>
<td>Agrietamientos por fatiga</td>
</tr>
<tr>
<td>4</td>
<td>Inspección por partículas magnéticas y ultrasonido a soldaduras del codo de conexión entre el colector de entrada del sobrecalentador secundario y la tubería de transferencia (a TEMPERACIÓN).</td>
<td>Soldaduras del codo de conexión entre el colector de entrada del sobrecalentador secundario y el colector de transferencia (ST1 y ST2)</td>
<td>100%</td>
<td>PM</td>
<td>UT-Phased Array</td>
<td>Agrietamientos por fatiga</td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas y UT-Phased Array a soldaduras circunferenciales del colector.</td>
<td>Soldaduras circulares del colector (SC)</td>
<td>100%</td>
<td>PM</td>
<td>UT-Phased Array</td>
<td>Agrietamientos por fatiga</td>
</tr>
<tr>
<td>6</td>
<td>Inspección por partículas magnéticas y UT-Phased Array a soldaduras entre el colector de entrada del sobrecalentador secundario y la cabeza del colector.</td>
<td>Soldaduras entre el colector de entrada del sobrecalentador secundario y la</td>
<td>100%</td>
<td>PM</td>
<td>UT-Phased Array</td>
<td>Agrietamientos por fatiga</td>
</tr>
</tbody>
</table>
7.4.18. **Sobrecalentador Secundario**

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual del conjunto del sobrecalentador secundario "finishing" y "platen", con especial atención al estado de conservación de los serpentines. (total 13 parrillas)</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-94</td>
<td>Zonas con problemas de erosión por gases.</td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual de la alineación en la dirección vertical, longitudinal y trasversal con respecto al flujo de gas</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-94</td>
<td>Deformaciones permanentes</td>
</tr>
<tr>
<td>3</td>
<td>Inspección visual niveles 1 a 5 de las soldaduras de unión de los amarres (espaciadores) y patines (espaciadores deslizantes) a los tubos de los serpentines del sobrecalentador secundario. Si se observan roturas que puedan afectar a tubos realizar líquidos penetrantes.</td>
<td>Soldaduras de unión de los amarres (espaciadores) y patines a tubos de los serpentines del sobrecalentador secundario (SA1 y SA2, nivel 1 a 6)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-94</td>
<td>Roturas, agrietamientos</td>
</tr>
<tr>
<td>4</td>
<td>Inspección visual a zonas de influencia de los sopladores rotativos en los serpentines del sobrecalentador secundario "finishing". Realizar medición de espesores por ultrasonido a zonas erosionadas.</td>
<td>Zonas de influencia de los sopladores rotativos (N1: elev. 80’5”; N2: elev. 88’ 3”; N3: elev. 100”)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-94</td>
<td>Erosión por sopladores. Reducción de espesor producido en zonas con posible erosión.</td>
</tr>
</tbody>
</table>
Inspección por ultrasonido en las curvas inferiores de los serpentines del sobrecalentador secundario "finishing" y "platen".

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Inspección por ultrasonido en las curvas inferiores de los serpentines del sobrecalentador secundario "finishing" y "platen".</td>
<td></td>
<td>20%</td>
<td>UT</td>
<td>CA-141-94</td>
<td>Reducción de espesor producido por el fenómeno pitting</td>
</tr>
<tr>
<td>6</td>
<td>Inspección visual de accesorios y soportes soldados.</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-94</td>
<td>Agrietamientos y fisuras</td>
</tr>
<tr>
<td>7</td>
<td>Medición de espesores por ultrasonido de capa de magnetita en tramos UTO1 y UTO2 en seis elementos, UTO3 y UTO4 en diez elementos.</td>
<td>Tramos UTO1 a UTO4</td>
<td></td>
<td>UTO</td>
<td>CA-141-94</td>
<td>Agotamientos de vida a termofluencia</td>
</tr>
<tr>
<td>8</td>
<td>Réplica metalográfica de los primeros tubos de los serpentines del sobrecalentador finishing y platen, así como soldaduras disimiles.</td>
<td>-</td>
<td>Muestreo</td>
<td>RM</td>
<td>CA-141-94</td>
<td>Creep</td>
</tr>
<tr>
<td>9</td>
<td>Muestras para laboratorio de tubería del sobrecalentador finishing y platen, para evaluación de ciclo de vida.</td>
<td>-</td>
<td>Muestreo</td>
<td>LAB</td>
<td>CA-141-94</td>
<td>Creep o a fatiga por corrosión.</td>
</tr>
</tbody>
</table>

7.4.19. **Colecctor de salida del sobrecalentador secundario**

Las inspecciones que se deben realizar son:

COLECTOR DE SALIDA DEL SOBRECALENTADOR SECUNDARIO

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual del conjunto del colector de salida del sobrecalentador secundario y los tubos de conexión o "Stub tubes".</td>
<td></td>
<td></td>
<td>100%</td>
<td>IV</td>
<td>Roturas, deformaciones y corrosión</td>
</tr>
<tr>
<td></td>
<td>Soldaduras de conexión entre el colector de entrada del sobrecalentador secundario y los tubos del sobrecalentador secundario (S1.1 a S1.13, S2.1 a S2.13, S3.1 a S3.13 y S4.1 a S4.13)</td>
<td>S1.1 a S1.13, S2.1 a S2.13, S3.1 a S3.13 y S4.1 a S4.13</td>
<td></td>
<td></td>
<td>CA-141-97</td>
<td>Agrietamientos por fatiga y/o Creep</td>
</tr>
<tr>
<td>2</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión entre el colector de salida del sobrecalentador secundario y los tubos del sobrecalentador secundario.</td>
<td></td>
<td></td>
<td>50%</td>
<td>PM</td>
<td>CA-141-97</td>
</tr>
<tr>
<td>Núm.</td>
<td>Descripción</td>
<td>Inspección Método</td>
<td>Porcentaje</td>
<td>Norma</td>
<td>Comentarios</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión entre el colector de salida del sobrecalentador secundario y tapones de inspección.</td>
<td>Soldaduras de conexión entre el colector de salida del sobrecalentador secundario y tapones de inspección (SP1 y SP2)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-97</td>
<td>Agrietamientos por fatiga y/o Creep</td>
</tr>
<tr>
<td>4</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión de termopozos</td>
<td>Soldadura de la conexión de termopozos (STP1 y STP2)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-97</td>
<td>Fisuras debido a fatiga o Creep</td>
</tr>
<tr>
<td>5</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión de venteos</td>
<td>Soldadura de la conexión de venteos (SV)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-97</td>
<td>Fisuras debido a fatiga o Creep</td>
</tr>
<tr>
<td>6</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión de drenajes</td>
<td>Soldadura de la conexión de drenajes (SD)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-97</td>
<td>Fisuras debido a fatiga o Creep</td>
</tr>
<tr>
<td>7</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión entre el colector de salida del sobrecalentador secundario y la válvula de seguridad</td>
<td>Soldaduras de conexión entre el colector de salida del sobrecalentador secundario y la válvula de seguridad (SVS)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-97</td>
<td>Fisuras debido a fatiga o Creep</td>
</tr>
<tr>
<td>8</td>
<td>Inspección por partículas magnéticas a soldaduras de conexión entre el colector de salida del sobrecalentador secundario y la válvula de alivio (mecánica)</td>
<td>Soldaduras de conexión entre el colector de salida del sobrecalentador secundario y la válvula de alivio (mecánica) (SVA)</td>
<td>100%</td>
<td>PM</td>
<td>CA-141-97</td>
<td>Fisuras debido a fatiga o Creep</td>
</tr>
<tr>
<td>9</td>
<td>Inspección por partículas magnéticas y UT-Phased Array a soldaduras circunferenciales del colector.</td>
<td>Soldaduras circulares del colector (SC)</td>
<td>100%</td>
<td>PM</td>
<td>UT-Phased Array</td>
<td>CA-141-97</td>
</tr>
<tr>
<td>10</td>
<td>Inspección por partículas magnéticas y UT-Phased Array a soldaduras entre el colector de salida del sobrecalentador secundario y la cabeza del colector.</td>
<td>Soldaduras entre el colector de salida del sobrecalentador secundario y la cabeza del colector (SH)</td>
<td>100%</td>
<td>PM</td>
<td>UT-Phased Array</td>
<td>CA-141-97</td>
</tr>
<tr>
<td>11</td>
<td>Inspección por partículas magnéticas y ultrasonido de la soldadura de unión entre el colector de salida del sobrecalentador secundario y la tubería de vapor principal.</td>
<td>Soldadura de unión entre el colector de salida del sobrecalentador secundario y la tubería de vapor principal (STVP).</td>
<td>100%</td>
<td>PM</td>
<td>UT</td>
<td>CA-141-97</td>
</tr>
</tbody>
</table>
12 Realización de réplicas metalográficas en ZAT de soldaduras entre el colector de salida del sobrecalentador secundario y la cabeza del colector. Zona R1 y R2 100% RM CA-141-97 Daño por cavidades o envejecimiento estructural

13 Inspección visual endoscópica entrando por tapón de inspección o corte de tubo. Evaluar el estado de la superficie interna, de penetraciones y ligamientos. - 50% IV (e) CA-141-97 Agrietamientos entre ligamentos

7.4.20. **Tubo espaciador**

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual de los tramos del tubo espaciador</td>
<td>Tramos del tubo espaciador (TST)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-91</td>
<td>Roturas, agrietamientos</td>
</tr>
<tr>
<td>2</td>
<td>Inspección por partículas magnéticas de las soldaduras de unión entre tramos del tubo espaciador</td>
<td>Soldaduras de unión entre tramos del tubo espaciador (SST)</td>
<td>50%</td>
<td>PM</td>
<td>CA-141-91</td>
<td>Agrietamientos por corrosión/ fatiga.</td>
</tr>
<tr>
<td>3</td>
<td>Inspección por partículas magnéticas de las soldaduras entre el tubo espaciador y aletas</td>
<td>Soldaduras de unión entre tramos del tubo espaciador (zona ZF, soldaduras STF)</td>
<td>25%</td>
<td>PM</td>
<td>CA-141-91</td>
<td>Agrietamientos por fatiga.</td>
</tr>
</tbody>
</table>

7.4.21. **Cámara muerta superior (Pent-house)**

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual de la cámara muerta superior, especialmente en las esquinas y bordes donde los esfuerzos pueden ser críticos.</td>
<td>Zona CS, con especial atención a las esquinas E1 a E12</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-104</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual de elementos estructurales como placas, vigas, soportes, soldaduras, etc.</td>
<td>Elementos estructurales y soldaduras de estos (Zona ZS)</td>
<td>Muestreo</td>
<td>IV</td>
<td>CA-141-104</td>
<td>Porciones oxidadas, áreas con infiltraciones, daños y quemaduras.</td>
</tr>
<tr>
<td>3</td>
<td>Inspección visual de pines, pernos y tuercas de los elementos estructurales de la cámara muerta superior.</td>
<td>-</td>
<td>Muestreo</td>
<td>IV</td>
<td>CA-141-104</td>
<td>Daños como fisuras o elemento ausente.</td>
</tr>
</tbody>
</table>
Inspección visual de colgantes, tensores, pasadores, soportes y soldaduras

Colgantes (H1 a H3, F1 a F14)
Tensores (TB, F1 a F14)
Pines (Pn, F1 a F14)

Muestreo IV CA-141-62 Déficit geométrico y desalineamiento

Para las termocuplas y otros sensores, las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monitoreo de las termocuplas y sensores instalados sobre las partes metálicas, verificando la funcionalidad, la confiabilidad de la medición y la integridad de las partes metálicas.</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual del conexionado de los cables.</td>
<td>-</td>
<td>Muestreo</td>
<td>IV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Inspección visual de la condición del aislamiento térmico.</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

7.4.22. Cámara muerta de la nariz superior (Nose Dead Space)

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual de la cámara muerta de la nariz superior.</td>
<td>-</td>
<td>100%</td>
<td>IV</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
| 2 | Verificación de la integridad del sellado (que no haya presencia de ceniza o lugares donde se pueda infiltrar la ceniza) en la cámara muerta | - | 100% | IV | - | Fugas
Presencia de grandes parches de humedad en las áreas de sello después del lavado del hogar. |
| 3 | Inspección visual de elementos estructurales como láminas metálicas, vigas, riostras, etc. y sus correspondientes soldaduras. | - | Muestreo | IV | - | Signos de oxidación, déficit geométrico |

7.4.23. Cinturones de amarre (buckstays)

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
</table>

BUCKSTAYS (CINTURONES DE AMARRE)
<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción de la tarea</th>
<th>Zona en plano</th>
<th>Alcance</th>
<th>END</th>
<th>Plano no.</th>
<th>Mecanismo de falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspección visual exterior del conjunto de Buckstays</td>
<td>Buckstays (zona BKS, N1 a N8)</td>
<td>100%</td>
<td>IV</td>
<td>CA-141-119</td>
<td>Deformaciones, fisuras</td>
</tr>
<tr>
<td>2</td>
<td>Inspección visual de lugs, pernos, tuercas de los buckstays</td>
<td>Elementos estructurales y soldaduras de estos.</td>
<td>Muestreo</td>
<td>IV</td>
<td>CA-141-119</td>
<td>Elementos ausentes</td>
</tr>
<tr>
<td>3</td>
<td>Inspección visual de las soldaduras de los buckstays</td>
<td>-</td>
<td>Muestreo</td>
<td>IV</td>
<td>CA-141-119</td>
<td>Fisuras de fatiga</td>
</tr>
</tbody>
</table>

7.4.24. Windbox

Las inspecciones que se deben realizar son:

<table>
<thead>
<tr>
<th>WINDBOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

7.5. INSPECCIONES DE SEGURIDAD

Para estas inspecciones se tomó como referencia la NR-13 de Brasil [4].

- Una inspección de seguridad adicional se llevará a cabo en caso de que surjan las siguientes oportunidades:
 - Cuando la caldera está dañada por un accidente u otra ocurrencia que pudiera afectar su seguridad;
 - Cuando la caldera esté sometida a modificaciones o reparaciones importantes que puedan modificar sus condiciones de seguridad;
 - Antes de la puesta en marcha de la caldera, cuando ha estado inactivo durante más de 6 (seis) meses.

- La inspección de seguridad se llevará a cabo bajo la responsabilidad técnica del personal cualificado (8) –PC–.

(8) ASME Nivel III
➢ Cada caldera deberá tener, en el lugar donde se ha instalado, los siguientes registros, debidamente actualizados:

- Un "Dossier de Caldera", suministrado por su fabricante, con la siguiente información:
 - Código de diseño y año de edición;
 - Especificaciones de materiales;
 - Procedimientos utilizados durante la fabricación, montaje e inspección final;
 - Métodos utilizados para establecer la Presión Máxima de Trabajo Admisible – PMTA–;
 - Registros de la prueba hidrostática realizada por el fabricante;
 - Un conjunto de dibujos y otros datos necesarios para seguir la vida útil de la caldera;
 - Características de funcionamiento;
 - Datos de dispositivos de seguridad;
 - Año de fabricación;
 - Categoría de la caldera.

- Un Libro de Registro de Seguridad (bitácora), que estará compuesto por páginas numeradas, carpetas u otro sistema similar con confiabilidad equivalente donde se registrarán los siguientes aspectos:
 - Todos los acontecimientos relevantes capaces de influir en las condiciones de seguridad de la caldera;
 - Los acontecimientos de las inspecciones de seguridad iniciales, periódicas y extraordinarias, que deben contener el estado operacional de la caldera, nombre y firma legibles del PC y del operador de la caldera durante el momento de la inspección.

- Diseño de la instalación; la responsabilidad del diseño de la instalación de la caldera, que es responsabilidad del PC y se ajustará a los aspectos de seguridad, salud y medio ambiente previstos en las normas reglamentarias y disposiciones legales;

- Los Diseños de Modificación o Reparación – DMR –:
 - Deben realizarse diseños previos en las siguientes situaciones:
 - Siempre que cambien las condiciones de diseño;
 - Siempre que se realicen reparaciones que puedan comprometer la seguridad.
 - Deben:
 - Ser diseñados o aprobados por un PC;
 - Especificar el tipo de materiales utilizados, los procedimientos de ejecución, el control de calidad y la calificación del personal que realiza la modificación / reparación;
- Ser divulgado a los empleados de la central que están involucrados con el equipo.

▪ Informes de inspección. Este informe deberá redactarse en páginas numeradas que contengan como mínimo:

 o Los datos registrados en la placa de identificación de la caldera;
 o Categoría de la caldera;
 o Tipo de caldera;
 o Tipo de inspección realizada;
 o Fecha de inicio y finalización de la inspección;
 o Descripción de las inspecciones, exámenes y ensayos realizados;
 o Registros fotográficos del examen interno de la caldera;
 o Resultados de las inspecciones y medidas;
 o Lista de ítems de estas inspecciones que no se cumplen;
 o Recomendaciones necesarias y medidas;
 o Un informe concluyente sobre la integridad de la caldera hasta la siguiente inspección;
 o Fecha prevista para la nueva inspección de la caldera;
 o Firma legible y el número de registro de la tarjeta de registro profesional del PC y la firma legible de los técnicos que han participado en la inspección.

▪ Certificados de calibración de dispositivos de seguridad.

➢ Las recomendaciones de la inspección serán registradas e implementadas por el responsable de mantenimiento de la central, con plazos y responsabilidad para la implementación.

➢ Siempre que los resultados de la inspección determinen cambios en la condición de diseño, la placa de identificación, las documentaciones del Dossier de calderas deben ser actualizadas.
8. ANEXOS

Anexo I: Método de Inspección Preventiva y Predictiva en Calderas
Anexo II: 60" I.D. Steam Drum Internals (3600-02-16-0001)
Anexo III: 60" I.D. Steam Drum Arrangement (CA-141-70)
Anexo IV: Boiler Tube Templet for 3" O.D. Tubes (CA-141-83)
Anexo V: Setting Details for Boiler (4160-05-02-0001)
Anexo VI: 42" I.D. Lower Drum Arrangement (CA-141-71)
Anexo VII: Downcomer and Manifold Arrangement and Details (CA-141-89-A)
Anexo VIII: Furnace Water Wall Feeders Arrangement (CA-141-89)
Anexo IX: Front & Rear Water Wall Headers (CA-141-81-E)
Anexo X: Side Water Wall - Front Panel Assy (CA-141-80-A)
Anexo XI: Side Water Wall - Center Panel Assy (CA-141-82-A)
Anexo XII: Side Water Wall - Rear Panel Assy (CA-141-82-B)
Anexo XIII: Sub Assy Fur Lower Front Wall (CA-141-80)
Anexo XIV: Sub Assy Fur Lower Front Wall (CA-141-80-A)
Anexo XV: Tube Assy Fur Upper Front Wall – R. & L. Panels (CA-141-80-E)
Anexo XVI: Tube Assy Fur Upper Front Wall - Center Panel (CA-141-80-F)
Anexo XVII: Side Water Wall - Front Panel Assy (CA-141-82)
Anexo XVIII: Side Water Wall - Center Panel Assy (CA-141-82-A)
Anexo XIX: Side Water Wall - Rear Panel Assy (CA-141-82-B)
Anexo XX: Tube Assy Fur Lower Rear Water Wall - R. C. & L. Panels (CA-141-81-B)
Anexo XXI: Sub Assy Fur Upper Rear Water Wall - R. C. & L. Panels (CA-141-81-C)
Anexo XXII: Boiler Enclosure Steel Furnace Hopper (CA-141-110)
Anexo XXIII: Riser Tubes Arrangement (4160-02-11-0001)
Anexo XXIV: Roof Tubes Assembly (CA-141-84)
Anexo XXV: Tubos de Pantalla Pared Trasera (CA-141-81-D)
Anexo XXVI: Unheated Inlet Stubs 2 3/4" O.D. Steam Supply Tubes (CA-141-95)
Anexo XXVII: Tubos Sobrecalentador Primario o de Baja Temperatura (CA-141-93-1)
Anexo XXVIII: 12 3/4" O.D. Primary Suphtr. Outlet Header (CA-141-96)
Anexo XXIX: 12 3/4" O.D. Spray Piping Atemperator (CA-141-99)
Anexo XXXI: Serpentines del Sobrecalentador Secundario y Sobrecalentador Final (CA-141-94)
Anexo XXXII: 14" O.D. Secondary Suphtr. Outlet Header (CA-141-97)
Anexo XXXIII: Arrgt. of Spacer Tube for Primary & Secondary Sphtr. (CA-141-91)
Anexo XXXIV: Boiler Enclosure Steel Outer Roof (CA-141-104)
Anexo XXXV: Assy of Hangers in Roof Area (CA-141-62)
Anexo XXXVI: Buckstays Arrangement (CA-141-119)
Anexo XXXVII: General Arrgt. of Windbox Structural Steel (CA-141-116)
Anexo XXXVIII: OI -69 Thermal Power Plants - Boiler Maintenance Technical Standard
Anexo XXXIX: Manual de Inspecciones C.T Termozipa U3
Anexo XXXX: Guidelines for Safe Use of Pressure Equipment
Anexo XXXXI: **NR-13**

9. PROPUESTA: CALIFICACIÓN DE PERSONAL PARA OPERACIÓN DE CALDERAS

- Se entiende por operador de caldera la persona que cumple cualquiera de las siguientes condiciones:
 - Tener un certificado de competencias laborales para la Operación de la Caldera y prueba de entrenamiento teórico práctico.
 - Tener un certificado de formación en Seguridad para la Operación de Calderas.

- Todos los operadores de calderas deberán cumplir con un período de prácticas operando sus propias calderas que operarán, las cuales deberán ser supervisadas, documentadas y con una duración mínima de 80 horas.

- El establecimiento donde se realice la formación teórica y práctica deberá estar certificada por un ente gubernamental para la operación de las calderas, que lo autorice para ofrecer estos servicios.

- Los empleados implicados directa o indirectamente en la operación de las instalaciones (caldera), deberán realizar cursos de capacitación siempre que se produzcan cambios significativos en la operación de los equipos bajo su responsabilidad, o cambios en los métodos, procesos y organización del trabajo.