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Resumen 

Este trabajo presenta el desarrollo de una metodología para construir ciclos locales de 

conducción utilizando el consumo de combustible y las emisiones del vehículo como criterios 

para evaluar su representatividad. Actualmente, el proceso para construir ciclos locales de 

conducción solo garantiza la representatividad en términos de los parámetros característicos 

(CPs). Los CPs a su vez están orientados a describir únicamente los patrones de manejo de 

la región de estudio y no el consumo de combustible ni las emisiones de los vehículos. 

Inicialmente se realizó una revisión del estado del arte acerca de los ciclos de conducción 

desarrollados en el mundo y su relevancia para desarrollar estrategias efectivas que busquen 

optimizar la operación de los vehículos disminuyendo su impacto energético y ambiental. En 

segundo lugar, se identificó que i) la cantidad y calidad de los datos de viajes monitoreados, 

ii) el método de construcción de los ciclos de conducción, y iii) los criterios usados para 

evaluar los ciclos de conducción son los factores principales que afectan su representatividad. 

Para mejorar la representatividad de los ciclos locales de conducción en términos del 

consumo de combustibles y las emisiones se desarrollaron, en este trabajo, un método 

determinístico denominado Fuel-based (FB) y un método estocástico denominado Energy-

based Micro-trips (EBMT). El desempeño de los métodos desarrollados fue comparado con 

el de los métodos Micro-trips y Cadenas de Markov Monte Carlo, los cuales han sido 

tradicionalmente utilizados en la construcción de ciclos de conducción [1]–[3]. En segundo 

lugar, este trabajo analizó los criterios históricamente utilizados para evaluar la 

representatividad de los ciclos de conducción. Se concluyó que el porcentaje de tiempo en 

ralentí, la desviación de la aceleración, la velocidad promedio, la intensidad cinemática y la 

potencia específica del vehículo son los criterios de evaluación que garantizan ciclos de 

conducción con mayores niveles de representatividad. En tercer lugar, se identificó que el 

tiempo de duración del ciclo de conducción puede ser usado como un factor el cual influye 

en la representatividad de los ciclos generados. Se analizaron ciclos de conducción con 

tiempos de duración entre 5 y 120 minutos, concluyendo que ciclos de conducción muy 

cortos no representan los patrones de manejo de la región de estudio. Finalmente, este estudio 

presenta el desarrollo de un equipo de telemetría para monitorear el consumo de combustible, 

la velocidad y el tiempo de operación de un vehículo liviano de pasajeros. El desarrollo de 

este equipo fue necesario dado que los dispositivos disponibles comercialmente están 

diseñados principalmente hacia a la gestión y logística de una flota de vehículos, y por ende 

no facilitan el calculo del impacto energético y ambiental del vehículo. Las variables 

registradas por este equipo y su frecuencia de muestreo corresponden a las condiciones 

requeridas por el EBMT para desarrollar ciclos de conducción que representen los patrones 

de manejo de una región, al igual que su consumo de combustible y las emisiones vehiculares.  
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Abstract 

 

This work presents the development of a methodology to construct local driving cycles using 

fuel consumption and vehicle emissions as assessment criteria to evaluate the 

representativeness of the driving cycle. Currently, the process for constructing local driving 

cycles only guarantees representativeness in terms of the characteristic parameters (CPs). At 

the same time, the CPs are aimed to describe only the driving patterns and not the fuel 

consumption nor emissions of the vehicles. A review of the state of the art was carried out 

on the driving cycles developed in the world and their relevance to develop strategies to 

optimize the operation of vehicles, reducing their energy and environmental impact. We 

identified that i) the quantity and quality of the vehicle operation data, ii) the method to 

construct the driving cycles, and iii) the criteria used to assess the representativeness of the 

driving cycles, are the main factors that affect their representativeness. To improve the local 

driving cycles in terms of fuel consumption and emissions, a deterministic method defined 

as the Fuel-based (FB) method and a stochastic method defined as the Energy-based Micro-

trips (EBMT) method were developed. The performance of the developed methods was 

compared with Micro-trips and Markov Monte Carlo Chain methods, which have 

traditionally been used in the construction of driving cycles [1]–[3] . Additionally, in this 

work is analyzed the criteria commonly used to assess the representativeness of driving 

cycles. We concluded that the percentage of time in idling, the standard deviation of 

acceleration, the average speed, the kinetic intensity and the vehicle specific power are the 

assessment criteria that guarantee driving cycles with high levels of representativeness 

respect to the driving patterns. Also, the time duration of the driving cycle was identified as 

a factor which influences their representativeness. Driving cycles with time duration between 

5 and 120 minutes were analyzed. It was concluded that very short driving cycles do not 

represent the driving patterns of the region under study. Finally, this study presents the 

development of a telemetry equipment to register the fuel consumption, speed and operating 

time of a light-duty vehicle. The development of this equipment was necessary due to the 

available devices are oriented to the management and logistics of a vehicle fleets and they 

are not designed to determine the energetic and environmental impacts. The variables 

recorded by the telemetry equipment and its sampling frequency correspond to the inputs 

required by the EBMT to develop driving cycles that represent the driving patterns of a 

region, as well as its fuel consumption and vehicle emissions. 



 

 

8 

Table of contents 

Resumen ..................................................................................................................................6 

Abstract ...................................................................................................................................7 

Table of contents .....................................................................................................................8 

Figure list ..............................................................................................................................11 

Table list ................................................................................................................................13 

1 Introduction ....................................................................................................................15 

1.1 The importance of driving cycles in the energy efficiency of road transport .......15 

1.2 Thesis objectives ...................................................................................................18 

1.3 Structure of this document ....................................................................................19 

2 Driving Cycles Based on Fuel Consumption .................................................................21 

2.1 Introduction ...........................................................................................................22 

2.2 Material and Methods ...........................................................................................24 

 Regions of Study ...............................................................................................24 

 Vehicles .............................................................................................................26 

 Instrumentation .................................................................................................26 

 Data Collection .................................................................................................27 

 Assessment Methodology .................................................................................27 

2.3 Results and Discussion ..........................................................................................28 

 Description of Driving Patterns ........................................................................28 

 The SFC Distribution ........................................................................................29 

 Similitude of CPs and SAFDs ...........................................................................30 

2.4 Conclusions ...........................................................................................................33 

2.5 Appendix A ...........................................................................................................34 

2.6 Appendix B ...........................................................................................................35 

3 Comparison of three methods for constructing real driving cycles ...............................37 

3.1 Introduction ...........................................................................................................38 

3.2 Materials and Methods ..........................................................................................40 

 Selected regions ................................................................................................40 

 Monitored vehicles and instrumentation ...........................................................41 

 Vehicle monitoring campaign ...........................................................................43 

 Implementation of the MT, MCMC and FB Methods ......................................43 

 Test to Verify the Correct Implementation of the DC Construction Method ...44 

 Methodology used to compare the MT, MCMC and FB methods ...................45 



 

 

9 

3.3 Results and discussion ..........................................................................................48 

3.4 Conclusions ...........................................................................................................53 

3.5 Appendix A - Analysis of variation of the characteristic parameters in stochastic 

methods .............................................................................................................................54 

4 Driving cycles that reproduce driving patterns, energy consumptions and tailpipe 

emissions ...............................................................................................................................60 

4.1 Introduction ...........................................................................................................61 

4.2 Materials and methods ..........................................................................................64 

 Route selection ..................................................................................................65 

 Vehicle fleet and instrumentation .....................................................................65 

 Monitoring campaign ........................................................................................67 

 Driving cycle construction method and assessment criteria .............................68 

 Assessment of representativeness of the driving cycles obtained by each 

method 69 

 Empirical results ...............................................................................................71 

 Summary and conclusions ................................................................................75 

5 Main characteristic parameters to describe driving patterns .........................................78 

5.1 Introduction ...........................................................................................................79 

5.2 Materials and methods ..........................................................................................81 

 Selected regions ................................................................................................82 

 Vehicle fleet ......................................................................................................82 

 Instrumentation .................................................................................................83 

 Monitoring campaign and data quality analysis................................................83 

 Method to identify the set of CPs that best describes driving patterns .............84 

5.3 Results ...................................................................................................................86 

5.4 Conclusions ...........................................................................................................90 

6 Relationship between the time duration of a driving cycle and its representativeness 

result ......................................................................................................................................93 

6.1 Introduction ...........................................................................................................94 

6.2 Materials and methods ..........................................................................................96 

 Region selection ................................................................................................96 

 Instrumented vehicles .......................................................................................96 

 Monitoring campaign ........................................................................................97 

 Comparison of the time DCs duration results ...................................................97 

6.3 Results ...................................................................................................................99 

6.4 Conclusions .........................................................................................................104 



 

 

10 

7 Development of telemetry equipment for monitoring fuel consumption and vehicle 

operating variables ..............................................................................................................106 

7.1 Introduction .........................................................................................................107 

7.2 Materials and method ..........................................................................................109 

 Description of the telemetry equipment ..........................................................109 

 Elements integrated into the telemetry equipment ..........................................112 

 Used vehicle to test the telemetry equipment .................................................113 

 Method to validate the speed signals ..............................................................113 

 Method for validating energy consumption records .......................................114 

7.3 Results .................................................................................................................116 

7.4 Conclusions .........................................................................................................124 

8 General discussion .......................................................................................................126 

References ...........................................................................................................................131 

 

  



 

 

11 

Figure list 

Figure 1.1 Difference between the energy consumption results during the type approval 

(TA) test respect to the vehicle user perception [15]. ...........................................................16 
Figure 1.2 Local driving cycles developed in cities or regions around the world. Figure built 

based on [18], [19], [28]–[32], [20]–[27] ..............................................................................17 
Figure 2.1 Frequency distribution of the FCs measured of all trips considered in this study.

 ...............................................................................................................................................30 
Figure 2.2 Average relative differences (ARD) of common characteristic parameters (CPs) 

used to describe driving cycles (DC) as a function of the number of trips sampled and the 

type of regions used in this study. (a) positive kinetic energy (PKE); (b) average speed; (c) 

percentage of time with positive acceleration; (d) percentage of idling time. ......................31 
Figure 2.3 Comparison of the speed-acceleration probability distribution (SAPD) obtained 

for: (a) The sampled trips and, (b) The SFC closest to the average measured SFC of the 

sampled trips; (c) QoF as a function of the number of sampled trips. ..................................32 
Figure 2.4 Average relative differences (ARD) of characteristic parameters (CPs) 

commonly used to describe driving cycles (DC) as a function of the number of trips 

sampled and the type of regions used in this study. (a) maximum speed; (b) percentage of 

time in cruising; (c) percentage of time with positive acceleration; (d) average deceleration; 

(e) number of accelerations per kilometer; (f) root mean square and (g) percentage of time 

in deceleration. ......................................................................................................................34 
Figure 3.1 Relative differences of the values reported by manufacturers with respect to the 

real fuel consumption or real CO2 emissions as function of the vehicles´ model year. 

Sources: (a) [9] , (b) [10], (c) [11], (d) [12], (e) [13], (f) [14], (g) [15], and (h) [16]. Dotted 

line shows the tendency obtained from data of reference (f) which are shown as red dots. 

References e-h include diesel and gasoline. ..........................................................................38 
Figure 3.2 Illustration of the methodology followed to compare three alternatives to 

construct representative driving cycles .................................................................................40 
Figure 3.3 Illustration of the test used to verify the correct implementation of the methods 

to construct DCs. Artificial trips used (left side) and DCs (right side) obtained by (a) the 

MCMC and (b) the MT methods. .........................................................................................45 
Figure 3.4 ARDi and their confidence intervals for some CPs with different number of 

runs.  (a) Speed related CPs when applied MT. (b) Operation mode related CPs when 

applied MCMC. ....................................................................................................................48 
Figure 3.5 Boxplots of the relative differences (RDi) of the CPs that describe the DCs 

obtained by the (a) MT, (b) MCMC, and (c) FB methods in the general region after 500 

iterations. The ARDi are shown as blue dots, the IQRi by boxes, and the outliers by red “+” 

signs. The CPs used by each method as criteria for the construction of the DC are marked 

with (*). .................................................................................................................................50 
Figure 3.6 Boxplots of the relative differences (RDi) of the CPs that describe the DCs 

obtained by the (a) MT, (b) MCMC, and (c) FB methods in the Urban 1, Urban 2 and 

Mountain regions after 500 iterations. The ARDi are shown as blue dots, the IQRi by 

boxes, and the outliers by red “+” signs. The CPs used by each method as the criteria for 

the construction of the DC are marked with (*). ...................................................................52 
Figure 3.7 Driving cycles calculated from the same set of trips data and using a stochastic 

method. ..................................................................................................................................55 



 

 

12 

Figure 4.1 Proposed methodology to evaluate the representativeness of the driving cycles 

constructed following the EBMT method. ............................................................................64 
Figure 4.2 Box and whisker plots of the RDi after 1000 iterations obtained by the MT 

method using as assessment criteria a.) Average speed and % idling, b.) SFC, d.) SFC, 

Average speed and % idling, and d.) SFC, average speed, % idling and EI of CO2, CO and 

NOx for the case of Urban 1 region. .....................................................................................73 
Figure 4.2 Illustrative results for ARDi (blue dots), IQRi (boxes) and outliers (red “+”) 

obtained after constructing 1000 times DCs by the MT method and using as assessment 

parameters a.) SD a+,  % idl, and the Ave s which is one of the best combination,  and b.) 

SD a+, Ave a+ and Max a+, which is an arbitrary selected combination. The CPs used by 

each method as criteria for the construction of the DC are marked with (green “*”)...........88 
Figure 6.1 Time duration and average speed for driving cycles developed for different 

regions or cities. * Correspond to driving cycles for motorcycles ........................................95 
Figure 6.2 (a) Average ARD and average IQR of characteristic parameters for different 

driving cycle time duration. (b) Average ARD and average IQR of emissions for different 

driving cycle time duration, for the region Urban 1............................................................100 
Figure 6.3 (a) Average ARD and average IQR of characteristic parameters for different 

driving cycle time duration. (b) Average ARD and average IQR of emissions for different 

driving cycle time duration, for the region Urban 2............................................................104 
Figure 7.1 Control methodology of the telemetry equipment .............................................111 
Figure 7.2 Components of the telemetry equipment ...........................................................113 
Figure 7.3 Comparison between the speed register by the equipment and the driving cycle 

data ......................................................................................................................................117 
Figure 7.4 Coefficient of determination analysis between the telemetry equipment and 

gravimetric test results ........................................................................................................117 
Figure 7.5 𝐴𝑅𝐷 and the 𝐼𝑄𝑅  of the CPs for different time lengths of driving cycles .......121 
Figure 7.6 Five driving cycles proposed for Pereira ...........................................................124 
Figure 8.1 Methodology and main outputs of the thesis by chapter ...................................130 
 

  



 

 

13 

Table list 

Table 2.1 Characteristics of the roads considered in this work. ...........................................24 

Table 2.2 Technical characteristics of the instruments used in this study. ...........................27 

Table 2.3 Characteristic parameters (CPs) that describe the driving patterns followed by 

drivers during the monitoring campaigns at every region considered in this study..............29 

Table 3.1 Description of the regions considered in this work. Taken from Huertas et al. [54]

 ...............................................................................................................................................41 

Table 3.2 Technical characteristics of the instruments used in this work. ............................42 

Table 3.3 Input parameters used in the three methods of constructing DC. .........................44 

Table 3.4 CPs that describe the driving patterns, fuel consumption and emission of 

pollutants, observed in regions G (General), U1 (Urban 1), U2 (Urban 2) and M 

(Mountain).  Average relative differences (in percentage) observed between CPs of driving 

pattern and driving cycle, after 500 iterations. Boxes highlighted in green correspond to 

CPs with average relative differences below 10%.  The numbers highlighted in italic and 

blue, indicates that the corresponding CP was used by the specified method as the 

assessment criteria for the construction of the DC.  N/A: Not applicable. ...........................47 

Table 4.1 Some relevant driving cycles and the methods used for their construction. .........62 

Table 4.2 Characteristics of routes considered in this work. ................................................65 

Table 4.3 Technical characteristics of the vehicles used in this study. .................................66 

Table 4.4 Technical characteristics of the instruments used in this study ............................67 

Table 4.5 Characteristic parameters (CPs) used in this study to describe driving patterns and 

driving cycles ........................................................................................................................70 

Table 4.6 Characteristic parameters that describe the driving patterns in Urban 1 and Urban 

2 regions.  ARDi for each CP ...............................................................................................72 

Table 4.7 𝐴𝑅𝐷 and 𝐼𝑄𝑅 obtained for the different sets of assessment criteria after 

replicating the EBMT method 1000 times. ...........................................................................74 

Table 5.1 Construction methods and CPs used as assessment parameters in some DCs......80 

Table 5.2 Description of the regions considered in this study. .............................................82 

Table 5.3 Technical characteristics of the instruments used in this study. ...........................83 

Table 5.4 Characteristic parameters used to describe driving patterns. ................................86 

Table 5.5 Top 15 out 1140 combinations of CPs that, when used as assessment parameters 

in the MT method, produce DCs that best represent driving patterns and best reproduce fuel 

consumption and tailpipe emissions in 2 urban regions in Mexico. .....................................89 

Table 6.1 Characteristics of the selected region....................................................................96 

Table 6.2 Characteristics parameters used to describe the driving cycles in this study........99 

Table 6.3 ARD results of the DCs characteristic parameters for the Urban 1 region .........101 

Table 6.4 ARD results of the DCs characteristic parameters for the Urban 2 region .........102 

Table 7.1 Measured and calculated signals through the telemetry equipment. ..................109 

Table 7.2 Technical datasheet of the used vehicle ..............................................................113 

Table 7.3 Verification of values reported by the scale using mass .....................................114 



 

 

14 

Table 7.4 Set of driving conditions used to test the telemetry equipment ..........................115 

Table 7.5 Comparison between the fuel consumption reported by the telemetry equipment 

respect to gravimetric test results ........................................................................................118 

Table 7.6 Characteristic parameters used to describe driving patterns. ..............................119 

Table 7.7 Sets of assessment criteria with lowest values of 𝐴𝑅𝐷. .....................................120 

Table 7.8 𝐴𝑅𝐷 and the 𝐼𝑄𝑅  number results for different time lengths of driving cycles .122 

Table 7.9 Characteristic parameters of the five local driving cycles and driving patterns .123 

 

 



 

 

15 

1 Introduction  

 

1.1 The importance of driving cycles in the energy efficiency of road 

transport 

Road transport of people and goods is one of the anthropogenic activities with the greatest 

environmental and energy impact. In 2018, the European environmental agency indicated 

that transportation generated nearly 60% of nitrogen dioxide (NOx) emissions and 46% of 

particulate matter (PM10) [4]. At global level, it is estimated that 74% of carbon dioxide 

emissions (5.2 Gt CO2) come from this sector [5]. In terms of energy, road transport activities 

consume 35% of global energy resources, of which 91% is consumed by road transport [6].  

In the Colombian context, road transport consumes 44% of energy resources, of which 95% 

is of fossil origin [7]. Private passenger vehicles are the largest energy consumers, followed 

by freight transport and public passenger transport vehicles [7]. On the other hand, in 

Colombia, road transport is one of the main sources of air pollutants. For instance, in Bogota, 

transport is responsible of 78% of the pollutant emission [8]. 

To reduce the environmental and energy impact produced from the operation of vehicles, 

countries and regions have implemented policies to monitor and control the energy 

consumption and emissions of vehicles that enter to the fleet. The implementation of these 

policies and a type approval test have shown that the technological improvement of vehicles 

has led to the gradual reduction of energy consumption and vehicle emissions. At the same 

time, these results have evidenced the difference between the energy consumption and 

vehicle emissions values reported by vehicle manufacturers through type approval tests, in 

comparison with values perceived by users under real driving conditions. Different authors 

have studied this difference obtaining different magnitudes. The authors of references [9]–

[16] reported that vehicles users, according to the model and technology of the vehicle, 

observed between 9% to 60% more energy consumption than that reported by the vehicle 

manufacturer. 

 

The type approval tests carried out by vehicle manufacturers to determine the energy 

consumption and emissions of different vehicle models are developed under controlled 

laboratory conditions. In this test, the vehicle is located on a roller dynamometer for 

simulating the restrictive forces that occur on the road related with a predetermined driving 

routine called the driving cycle. Driving cycles are generally expressed as time series of 

vehicle speed and they seek to represent the driving patterns of a city or region. Driving 

patterns are the way people drive their vehicles in a specific city or region. In some states of 

the United States, the driving cycles most used in the type approval tests are the FTP 75 and 

its supplementary cycles US06 used for higher speed, higher acceleration and aggressive 

driving behavior, HWFET used for driving under highway conditions, and SC03 represents 

the engine load and the emission associated with the use of air conditioning. Until 2017, in 

Europe, the type approval tests were performed using the New European Driving Cycle 
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(NEDC). This cycle presents steady speeds, acceleration and load, which hardly represent 

the real operating conditions of a vehicle. Then, the European regulations made the transition 

to a transient driving cycle called Worldwide harmonized Light vehicles Test Cycles 

(WLTC). The WLTC features high acceleration-speed and high RPM-power ranges, which 

even covers the limited NEDC ranges [17]. The WLTC presents operation characteristics 

similar to those that a vehicle can have under normal operating conditions. A similar path 

was adopted by Japan by replacing its JP 10-15 steady state driving cycle used until 2011, 

with JC-08 transient driving cycle. 

 

Many of the vehicle operational conditions presented under real driving conditions are not 

represented by the approval tests. The author of reference [15] developed an analysis of the 

factors that increase the difference between the energy consumption value reported by the 

automakers and the one perceived by the user. Figure 1.1 summarizes these factors. 

 

 
Figure 1.1 Difference between the energy consumption results during the type approval 

(TA) test respect to the vehicle user perception [15]. 

 

The Figure 1.1 indicates that within the procedures of the type approval test, the enlistment 

and the measurement of the mechanical, energetic and environmental performances of the 

vehicle, could present flexibilities and tolerances that increase the vehicle energy 

consumption up to 15%. Externalities such as the additional mass to the one considered in 

the homologation test, aerodynamic restrictions, the condition and maintenance of the 

vehicle, variations in the ambient temperature and changes in the slope of the road can 

generate increases in vehicle energy consumption up to 14%. The electrical consumption of 

the systems of the vehicle, such as lighting and entertainment, and the use of the air 

conditioning system, could increase energy consumption up to 10%. Finally, the traffic 

conditions and the driving patterns typical of the region, which have not been represented in 

the driving cycles used in the homologation test, could increase the energy consumption of 

around 15%. 
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The driving cycles commonly used in the type approval tests allow to verify the compliance 

with emission and energy consumption standards of different vehicle models under a 

consistent and unbiased framework. However, these cycles represent a small range of the 

driving patterns that could occur in a city or region, which could produce an underestimation 

of the energy consumption and emissions. Therefore, an inaccuracy in estimating the energy 

and environmental impact of the transport sector in the region of study is caused. Therefore, 

there is a need to study how the driving patterns of a given city or a region varies from the 

standard cycles. 

 

As an alternative, local driving cycles have been developed to represent specific driving 

patterns of given cities or regions. Some of the local driving cycles developed in the world 

are presented in the Figure 1.2  

 

 
Figure 1.2 Local driving cycles developed in cities or regions around the world. Figure built 

based on [18], [19], [28]–[32], [20]–[27] 

 

The local driving cycles are considered as a signature of the driving patterns of a city or 

region. The driving pattern varies from city to city and from region to region [23]. Local 

factor influencing the driving patterns, and its driving cycles, are the size of the studied city 

or region, the composition of the fleet, the infrastructure and morphology of the local road 

network, and driving habits [22]. Variations on the driving patterns also generate variations 

in the emissions and energy consumption of the vehicles when they are tested under their 

representative driving cycle.  

Representativeness is the main issue for building a local driving cycle. The author of 

reference [33] indicates that the representativeness of a local driving cycle depends mainly 

on three factors:  

i) availability of a considerable amount of vehicle operation data 

ii) appropriate selection of the method of construction of the driving cycles 

iii) appropriate selection of parameters for the evaluation of the representativeness of 

the cycles 
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The vehicle operation variables via OBD (On-board diagnosis system), and geolocation data 

are currently available through the information and telecommunication technologies with 

high quality. Regarding the selection of the method for the construction of the driving cycles, 

two stochastic methods have been used historically: Micro-trips (MT), Markov Chain Monte 

Carlo (MCMC) and a deterministic method named trip-based method (TBM) [1]–[3]. To 

evaluate the representativeness of a driving cycle with respect to the driving patterns of a 

region, the aforementioned methods use criteria such as: average speed, maximum speed, 

average accelerations, number of accelerations per kilometer, among others, which are called 

characteristic parameters (CPs). Although current methods for constructing local driving 

cycles assures the representativeness in terms of driving patterns, they do not guarantee 

representativeness in terms of energy consumption and tailpipe emissions. This work 

proposes to move from measuring representativeness only in terms of driving patterns to 

measure it along with energy consumption and emissions. 

 

The research questions established for this thesis are:  

 

1. How to develop driving cycles that reproduce the driving patterns, energy consumption 

and emissions of a region? 

 

2. How to reduce the gap between the energy consumption and the vehicle emissions results 

from the dynamometer test respect to the values perceived by the vehicle users? 
 

1.2 Thesis objectives 

To address these research questions the proposed general objective of this research project is  

 

• Redesign the Micro-trips method for the construction of driving cycles, incorporating 

driving patterns, energy consumption and vehicle emissions, measured under real driving 

conditions, as representative criteria. 

 

To achieve the general objective, the following specific objectives are established: 

 

1. Incorporate the specific fuel consumption (SFC) as an evaluation criterion of the degree 

of representativeness of the driving cycles obtained under the Trip-based method 

(TBM). 

 

2. Compare the representativeness of the driving patterns obtained with the driving cycles 

built using the methods: i) Micro-trips (MT), ii) Markov Chain Monte Carlo (MCMC) 

with respect to the method developed in objective 1. 

 

3. Incorporate the specific fuel consumption (SFC) and vehicle emissions to the MT 

method, and evaluate the representativeness of the driving patterns that are obtained 

with the driving cycles built with this new method. 
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4. Identify the set of characteristic parameters, that together with fuel consumption, best 

describe the driving patterns of a region. 

 

5. Analyze the relationship between the time duration of the driving cycle and the 

representative results of the driving patterns.  

 

1.3 Structure of this document 

The activities and results of each specific objective are presented by chapters. Chapters 1, 2, 

3, and 4 correspond to articles published in scientific journals, while chapters 5 and 6 

correspond to articles that are finished and in the process of being submitted to evaluation 

and publication process. Chapter 7 shows the technical characteristics and validation tests of 

a vehicle monitoring equipment developed from this project. Chapter 8 presents a general 

discussion of the thesis results. The thesis structure is explained below and the chapters 

corresponding to each specific objective are specified. Likewise, the information of the 

scientific journals where the articles have been published, the authors and the own 

contribution to each of the articles are presented. 

 

 

Chapter 1. Introduction 

 

Chapter 2 (Objective 1) 

Huertas, J.; Giraldo, M.; Quirama, L.; Díaz, J. Driving Cycles Based on Fuel Consumption. 

Energies 2018, 11(11), 3064; https://doi.org/10.3390/en11113064. 

https://www.mdpi.com/1996-1073/11/11/3064 

Quirama, L.: supported the design of the methodology, supported the development of the 

algorithm and software management, state of art review, data analysis, supported the writing 

of the original draft and visualization of the results.  

 

Chapter 3 (Objective 2) 

Huertas, J.; Quirama, L.; Giraldo, M.; Díaz, J. Comparison of Three Methods for 

Constructing Real Driving Cycles. Energies 2019, 12(4), 665. 

https://doi.org/10.3390/en12040665. 

https://www.mdpi.com/1996-1073/12/4/665 

Quirama, L.: supported the conceptualization of the project, supported the design of the 

methodology, supported the development of the algorithm and software management, 

supported the development of the research, state of art review, data analysis, supported the 

writing of the original document and analysis of the results. 

 

Chapter 4 (Objective 3) 

Quirama, L.; Giraldo, M.; Huertas, J.; Jaller, M. 

Driving cycles that reproduce driving patterns, energy consumptions and tailpipe 

emissions, Transportation Research Part D: Transport and Environment, 

Volume 82, 2020, 102294, ISSN 1361-9209, 

https://doi.org/10.1016/j.trd.2020.102294. 

http://www.sciencedirect.com/science/article/pii/S1361920919312507 
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Quirama, L.: development of research, analysis and data filtering, support for the writing of 

the original draft and visualization of the results 

 

Chapter 5 (Objective 4) 

Quirama, L.; Giraldo, M.; Huertas, J.; Tibaquirá, J; Cordero, D.  

Main characteristic parameters to describe driving patterns 

Quirama, L.: supported the conceptualization of the project, supported the design of the 

methodology, supported the development of the algorithm and software management, 

supported the development of the research, state of art review, data analysis, supported the 

writing of the original document and analysis of the results. 

 

Chapter 6 (Objective 5) 

Quirama, L.; Giraldo, M.; Huertas, J.; Tibaquirá, J. 

Relationship between the time duration of a driving cycle and its representativeness 

result 

Quirama, L.: supported the conceptualization of the project, supported the design of the 

methodology, supported the development of the algorithm and software management, 

supported the development of the research, state of art review, data analysis, supported the 

writing of the original document and analysis of the results. 

 

Chapter 7 

Quirama, L.; Tibaquirá, J.; Huertas, J.; Castillo, J.; Mejia, J.; Valencia, M. 

Development of telemetry equipment for monitoring fuel consumption and vehicle 

operating variables  

Quirama, L.: supported for the conceptualization of the project, supported for the design of 

the methodology, supported for the development of the algorithm and software, analysis and 

filtering of data, supported for the writing of the original draft and visualization of the results. 

 

Chapter 8 

General discussion of the thesis results 
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2 Driving Cycles Based on Fuel Consumption 

Abstract: Type-approval driving cycles currently available, such as Federal Test Procedure 

(FTP) and Worldwide harmonized Light vehicles Test Cycles (WLTC), cannot be used to 

estimate real fuel consumption nor emissions from vehicles in a region of interest because 

they do not describe the local driving patterns. We defined a driving cycle (DC) as the time 

series of speeds that when reproduced by a vehicle, the resulting fuel consumption and 

emissions are similar to the average fuel consumption and emissions of all vehicles of the 

same technology driven in that region. We also declared that the driving pattern can be 

described by a set of characteristic parameters (CPs) such as mean speed, positive kinetic 

energy and percentage of idling time. Then, we proposed a method to construct those local 

DC that use fuel consumption as criterion. We hypothesized that by using this criterion, the 

resulting DC describes, implicitly, the driving pattern in that region. Aiming to demonstrate 

this hypothesis, we monitored the location, speed, altitude, and fuel consumption of a fleet 

of 15 vehicles of similar technology, during 8 months of normal operation, in four regions 

with diverse topography, traveling on roads with diverse level of service.  In every region, 

we considered 1000 instances of samples made of m trips, where m varied from 4 to 40. We 

found that the CPs of the local driving cycle constructed using the fuel-based method exhibit 

small relative differences (<15%) with respect to the CPs that describe the driving patterns 

in that region. This result demonstrates the hypothesis that using the fuel-based method the 

resulting local DC exhibits CPs similar to the CPs that describe the driving pattern of the 

region under study. 

 

Keywords: driving patterns; characteristic parameters; fuel consumption 

 

 

Frequent symbols and acronyms 

 

Symbol Description Unit 

ARD Average Relative Difference % 

 R2 Coefficient of determination  - 

CP Characteristic Parameter - 

DC Driving Cycle - 

ECU Engine Computer Unit - 

FC Fuel Consumption L/km 

GPS Global position system - 

LoS Level of Service - 

m.a.s.l. Meters above sea level m 

OBD On board diagnosis system - 
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PKE Positive kinetic energy per distance 

traveled 

m/s2 

QoF Quality of Fit - 

SAPD Speed acceleration probability distribution - 

 

 

2.1 Introduction 

Currently, there is a need for local driving cycles. Existing type-approval driving cycles do 

not describe correctly the driving patterns of a region of interests causing large differences 

between the fuel consumption (FC) observed during every day normal use of the vehicle in 

that region and the FC reported by the manufactures [9]. 

 

At present, there is not a clear definition for driving patterns. This term is used vaguely to 

describe the way drivers drive. Authors describe driving patterns in terms of a set of 

characteristic parameters (CPs), also known as performance values (PVs). They are speed-

time based variables such as average speed, percentage of idling time, average positive 

acceleration, positive kinetic energy, etc. It remains unclear which set of CPs properly 

describes a driving pattern but there is an agreement among authors that driving patterns 

influence vehicle fuel consumption [34], [35]. 

 

Driving cycles (DC) are time series of speeds that represent driving patterns [2], [34].  They 

have been constructed in the way that the values of the CPs of the DC are approximately 

equal to the values of the CPs that describe the driving patterns. DCs describe the workloads 

imposed on the vehicles and therefore have been used for assessing the environmental impact 

of traffic [36], and for optimizing new vehicles’ powertrain configurations and engine control 

strategies to reduce fuel consumption (FC) [18]. In this manuscript, we distinguish two types 

of DC: local and type-approval DC.  

 

Presently, the Worldwide harmonized Light vehicles Test Cycles (WLTC) and Federal Test 

Procedure (FTP), are some of the most well-known type-approval DCs [19], [37], [38]. These 

two DCs, as all type-approval DCs, are mainly used for the determination of vehicles’ fuel 

consumption and the mass emission of air pollutants, for comparative and certification 

processes [33], [39], [40]. Manufactures report the measured fuel consumption when the 

vehicle follows a type-approval DCs as part of the introduction process of a new technology 

in the vehicles market [17], [41]. However, these existing type-approval DCs do not describe 

correctly the real-world driving patterns of any particular region.  

 

The key issue relative to local DCs is their representativeness of the real-world local driving 

patterns. Authors look for DCs that provide a synthesized representation of the local driving 

patterns [36], [42], [43].  

 

Two main approaches have been used to construct DCs. The first one is the micro-trips-based 

approach in which a large sample of time series of speeds (trips) are divided into micro-

segments (known as micro-trips) which are speed vs. time sections with initial and final 

speeds equal to zero. Then, a set of micro-trips are selected “quasi-randomly” and spliced 
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together to form a candidate representative DC. A clustering step is occasionally applied for 

gathering micro-trips with similar speed-acceleration values. The selected DC is the one with 

CPs values similar to the respective average values of CPs of the trips collected. LA92, 

Singapore, Hong Kong and Bangkok DCs were obtained with this micro-trips approach [24], 

[40], [43].  

 

The second approach to construct DCs is based on Markov theory and uses the Monte Carlo 

technique. Some examples are found in [1], [44], [45]. In this second approach, speed and 

acceleration ranges are discretized into n and m sections, respectively. They configure a 

matrix of n x m states. The measured values of speed and acceleration from all the sampled 

trips are grouped into those states, forming the speed acceleration frequency distribution 

(SAFD) or the speed acceleration probability distribution (SAPD) when the SAFD is 

normalized. Next, an [(nxm) x (nxm)] probability transition matrix is computed. Similar to 

the SAPD, those probabilities are computed by counting the number the times that vehicles 

moved from one state to another and then normalizing with respect to the total number of 

transitions. Then, the Monte Carlo simulation technique is used to produce a candidate DC. 

The process consists of using a random number to select the next state in a manner in which 

transitions with the highest probabilities are the most likely to be chosen. The process is 

repeated until a given distance is covered or a given trip time has been completed. Finally, 

as in the micro-trips’ method, the representativeness of the candidate Monte Carlo simulated 

DC is evaluated with respect to a set of CPs whose average values are obtained from the 

entire set of sampled trips. Usually, an arbitrarily established threshold of ~15%  defines the 

degree of similarity or maximum allowed differences [12], [45], [46]. Some authors use the 

SAPD with the same role of a CP and use a threshold of 10-3 as criteria of similitude between 

the SAPD of the driving patterns and the SAPD of the candidate local DC. The LA01 driving 

cycle was constructed using this approach [45]. The major drawback of these two approaches 

to construct DC is that they are based on stochastic processes and therefore, although the 

methods are reproducible, they are not repeatable. That is, the resulting DC is different every 

time the methods are applied.  

 

Some authors have suggested to express the representativeness of the DC in terms of vehicle 

FC, where FC is expressed as the volume of fuel consumed over the distance traveled (L/km) 

[2], [47], [48]. However, none of them has evaluated this alternative due to the lack of 

simultaneous measurements of FC and vehicle speed.   

 

To advance in this alternative, in this study we propose to redefine a representative DC as 

the time series of speeds that when reproduced by a vehicle, the resulting FC is similar to the 

average FC of all vehicles of the same technology driven in the same region. In this line of 

thought, several alternatives can be used to construct a representative DC. As first approach, 

we propose to sample a large set of time series of speeds (trips), simultaneously with vehicle 

FC. Then, the trip with the FC closest to the average value of FC of the entire population of 

trips sampled is selected as the representative DC. This approach is repeatable and 

reproducible. This work aims to demonstrate that by using this fuel-based method to 

construct DCs, the representativeness of driving patterns is also implicitly achieved. 
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2.2 Material and Methods  

As stated before a driving pattern is the way drivers drive their vehicles in a given region. A 

local DC is a time series of speeds that represent that pattern. Both, driving patterns and local 

DCs are described by a set of CPs, such as average speed and average positive acceleration. 

Therefore, a local DC represent a driven pattern when for each CP, the value of that CP for 

the local DC is similar to the value of that CP for the driving pattern.  For example, when the 

average speed of the local DC is equal to the average speed of the drivers in the region of 

interest. Aiming to demonstrate that by defining representativeness of the DC in terms of fuel 

consumption, representativeness in terms of driving patterns is also achieved:  

 

• We monitored, for long periods of time, FC and vehicle speed of a fleet of vehicles 

of the same technology, running on regions with diverse characteristics.  

• We evaluated the relative differences of the CPs of the selected fuel-based-DC with 

respect to the average CPs of the trips sampled. We repeated the process for a large 

number of subsets of sampled trips.   

 

Next, we describe the details of each of these tasks.  

 Regions of Study 

With the goal of providing generality to our work, we looked for regions with different 

topographies, located at high altitudes, featuring well-maintained roads and with different 

level of services (LoS).  

 

 

Table 2.1 Characteristics of the roads considered in this work. 

Parameter Unit Urban 1 Urban 2 Uphill Mountain General 

Location - 
Mexico 

City 
TOL - - 

TOL-

MEX 

Facility - 
Local 

roadway 
Arterial Freeway Freeway Combined 

Level of traffic - High Medium Medium 
Low-

Medium 
Low-High 

LoS* - F E C C-B B-F 

Speed limit km/h 60 60 80 110 60-110 

Number of lanes - 3 3 4 4 3-4 

Length km 11.5 18.8 16.1 41.3 71.6 

Ave road grade % 1.4 1.8 6.1 5.6 4.0 

Max road grade % 5.2 9.0 15.0 15.0 15.0 

Min altitude m.a.s.l. 2255 2611 2255 2233 2233 

Max altitude m.a.s.l. 2258 2637 3313 3313 3313 
TOL:  Toluca, MEX: Mexico. *LoS: Level of service. LoS is the level of quality of a traffic facility and 

represents a range of operating conditions, generally in terms of service measures such as speed and travel time, 

freedom to maneuver, traffic interruptions, and comfort and convenience. Classification was done according to 

the US Highway capacity manual  [49]. 
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The US Capacity Manual defines six levels of services (LoS). The letters designate each 

level, from A to F, where A represents the best operating conditions and F the worst. Each 

level of service represents a variety of operating conditions and the driver's perception of 

those conditions. A description for each LoS is presented below: 

LoS A: describes primarily free-flow operations at average travel speeds, usually about 90 

percent of the Free Flow Speed (FFS) for the given street class. Vehicles are completely 

unimpeded in their ability to maneuver within the traffic stream. Control delay at signalized 

intersections is minimal.  

LoS B: describes reasonably unimpeded operations at average travel speeds, usually about 

70 percent of the FFS for the street class. The ability to maneuver within the traffic stream is 

only slightly restricted, and control delays at signalized intersections are not significant.  

LoS C: describes stable operations; however, ability to maneuver and change lanes in 

midblock locations may be more restricted than at LoS B, and longer queues, adverse signal 

coordination, or both may contribute to lower average travel speeds of about 50 percent of 

the FFS for the street class.  

LoS D: borders on a range in which small increases in flow may cause substantial increases 

in delay and decreases in travel speed. LoS D may be due to adverse signal progression, 

inappropriate signal timing, high volumes, or a combination of these factors. Average travel 

speeds are about 40 percent of FFS.  

LoS E: is characterized by significant delays and average travel speeds of 33 percent or less 

of the FFS. Such operations are caused by a combination of adverse progression, high signal 

density, high volumes, extensive delays at critical intersections, and inappropriate signal 

timing.  

LoS F: is characterized by urban street flow at extremely low speeds, typically one- third to 

one-fourth of the FFS. Intersection congestion is likely at critical signalized locations, with 

high delays, high volumes, and extensive queuing.  

 

 

We selected regions open to private companies offering regular passenger and cargo transit 

services. We considered four cases (Table 2.1). 

• Urban 1, which corresponds to a flat, densely populated region. We arbitrarily selected a 

set of roads covering 11.5 km inside Mexico City (2255 m above sea level (m.a.s.l.)). 

These roads are characterized by highly congested traffic (i.e., LoS E or F).  

 

• Urban 2, which corresponds to a flat region located on the outskirts of an urban region. 

We selected an 18.8 km-long road located on the outskirts of Toluca City (2611 m.a.s.l.), 

which has four lanes with a medium traffic flow (i.e., LoS E). 

 

• Mountain, whose topography includes significant altitude changes (>500 m). We selected 

a 41.3 km-long highway connecting the cities of Toluca and Mexico. This region starts 
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at 2255 m.a.s.l., ascends to 3313 m.a.s.l., and then it descends to 2611 m.a.s.l. with a 

maximum road grade of approximately 15%. It has four lanes with high traffic (~33,632 

daily vehicles, i.e., LoS C). 

 

• General, which is a combination of the previous cases. The selected set of regions spans 

71.6 km, with altitude variations from 2233 and 3313 m.a.s.l. and a maximum road grade 

of approximately 15%. This set of regions has both urban and suburban sections. 

 

A comparison with the Real Driving Emissions (RDE) requirement conditions is provided 

in Annex A. 

 Vehicles  

We looked for vehicles of the same technology with similar maintenance conditions, aiming 

to eliminate their effects on our study. Our collaborating company has a fleet of 680 

passenger buses, with 28 express buses that operate in the regions described previously, 

making no intermediate stops to pick up or drop off passengers. The fleet of buses used in 

this study were made between 2012 and 2014. They use diesel-fueled engines (Cummins 

ISM 425) that deliver 425 HP and 2102 Nm. These busses have a capacity of 49 passengers 

and their gross vehicle weight is 13,850 kg. They are 3.6 m tall, 12.85 m long and 2.6 m 

wide. They exhibit an aerodynamic drag coefficient of 0.64 and a rolling resistance 

coefficient of 0.006 [50]. 

 

 Instrumentation 

The measurement of instantaneous FC is essential to our work. Automotive diesel technology 

controls the amount of fuel injected into the engine combustion chamber by controlling the 

fuel injection time. This variable is available in the engine control unit (ECU) and can be 

read via the on-board diagnosis (OBD) system. We used the OBD interface provided by the 

engine manufacturer to read, report and store the instantaneous engine FC at a 1 Hz sampling 

period. We verified the accuracy of the data obtained using this interface by comparing the 

FC obtained via OBD with results obtained using an external graduated tank, which is the 

standard procedure to determine vehicle FC [51], [52].  Based on the determination 

coefficient (R2 > 0.9) and calibration slopes (m = 1.06) obtained in a correlation analysis 

between the results obtained by these two methods, we concluded that the determination of 

fuel consumption via OBD produces results comparable to the ones obtained using the 

calibrated tank.  

 

High precision GPSs (Table 2.2) were used to monitor position, altitude and speed of the 

vehicles as functions of time. Algorithms were developed to identify events where data were 

missing or had atypical values. Trips with less than 90% of data availability were disregarded. 

It was observed that the speed values reported by GPS were equivalent to those reported by 

the OBD system. The GPS altitude was compared with manual measurements of altimetry. 

An additional algorithm was developed to correct frequent errors in the GPS-reported 

altitude. 
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Table 2.2 Technical characteristics of the instruments used in this study. 

Variable 
Instrument/ 

Trademark 
Technical Characteristics 

Position: 

latitude, 

longitude and 

altitude 

Speed and 

time 

GPS/Garmin 

16x 

 

Position: 3–5 m, 95% typical 

Frequency: 1 Hz 

Speed: 0.05 m/s RMS steady state 

PPS time: 1 microsecond at rising edge of PPS pulse 

Instantaneous 

fuel 

consumption 

- 
Estimated through the injection time  

Reported by ECU through OBD2 

GPS: global position system; OBD2: on-board diagnostic system, second generation; ECU: engine control unit. 

 

 Data Collection  

Four monitoring campaigns were carried out to obtain real on-road driving data. One 

monitoring campaign was performed per region as described in Table 2.1 (Urban 1, Urban 

2, Mountain and General). Each region was measured in both directions using the 

instrumented buses described in the previous section. Buses were driven by the company’s 

regular drivers, and the buses were in service while we monitored the driving variables (speed 

and time) along with altitude and instantaneous FC at a frequency of 1 Hz, minimizing any 

disruption to regular vehicle operation. The monitoring campaigns included trips during 

different hours of the day, different days of the week, including weekends, and different 

seasons of the year. The data quality was verified. Trips with less than 90% of data 

availability were disregarded. After QA/QC analyses, 46 trips per region were left with 

simultaneous measurements of position, altitude, speed, FC, and mass emission of pollutants.  

 

 Assessment Methodology 

To gain generality in our conclusions, we studied the effects of the number of trips sampled 

on our results by randomly selecting sub-samples of trips out of the 46 trips sampled per 

region. The size of the sub-samples varied between 4 and 40. For each sample size, we 

repeated the sub-sampling process 1000 times. 

 

At each instance, we applied the fuel-based method. This is, we selected the trip j with the 

FC closest to the mean value for the FC of the sub-sample (𝐹𝐶̅̅̅̅  in Equation (2.1)):  

 

𝐷𝐶 = 𝐴𝑟𝑔{𝑚𝑖𝑛𝑗|𝐹𝐶𝑗 − (𝐹𝐶̅̅̅̅ )|} (2.1) 

 

Statistically speaking, the average FC calculated from the sub-sample is an estimation of the 

true mean FC of the whole population of busses monitored in each region. As we will show 
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later, the FC in every region followed a normal distribution (Figure 2.1) and therefore, the 

average value of the sub-sample is a good descriptor the true mean FC.  

 

We hypothesized that by using the fuel-based method, implicitly, the obtained DC represents 

the driving patterns. i.e., the characteristic parameter i of the obtained local DC (CPi
*) will 

be close to the average value obtained for that parameter from the sampled trips (𝐶𝑃𝑖). To 

test this hypothesis, we calculated the relative difference of CPi
* with respect to 𝐶𝑃𝑖 at each 

iteration of the analysis described previously. Then, for each of the CPi listed in Table 3, we 

reported the average relative differences (ARDi) obtained for each sample size from j=1 to j= 

n. In this case the value of n was set on 1000 iterations (Equation (2.2)): 

 

 

      𝐴𝑅𝐷𝑖 = ∑
(𝐶𝑃𝑖,𝑗

∗ − 𝐶𝑃𝑖,𝑗
̅̅ ̅̅ ̅̅ )

𝑛𝐶𝑃𝑖,𝑗
̅̅ ̅̅ ̅̅

𝑛

𝑗=1
 (2.2) 

 

 

Additionally, we used the quality of fit (QoF) metric (Equation (2.3)), [53] to evaluate the 

degree of similarity of the speed-acceleration probability distribution (SAPD) of the selected  

fuel-based DC to the SAPD of the subset of sampled trips. In Equation (2.3), Pi,j
* is the 

probability that the vehicle travels within the bin i, j of speeds and accelerations, in the states 

matrix obtained for the selected DC. 𝑃𝑖𝑗
̅̅ ̅ is the corresponding average probability obtained for 

the sub-sample of trips. This metric is independent of the number of bins used in the 

discretization of the speed and acceleration ranges and has a maximum value of 2: 

 

 

𝑄𝑜𝐹 = ∑ ∑(𝑃𝑖,𝑗
∗ − 𝑃𝑖𝑗

̅̅ ̅)
2

𝑚

𝑗=1

𝑛

𝑖=1

 (2.3) 

 

 

2.3 Results and Discussion 

 Description of Driving Patterns 

As stated before, driving patterns are described by CPs but currently it is unknown which set 

of CPs fully describe them. It is feasible that some CPs could be no good descriptors of the 

driving pattern and that some CPs could be redundant (linearly dependent of others). 

Furthermore, it is also feasible that additional CPs or metrics are needed to fully describe 

those patterns. This could be the case of driving patterns in mountain regions where metrics 

that directly influence FC, such as average road grade, should be added to the set of CPs. 

 

As the primary objective of this work is not to determinate the CPs or metrics required to 

fully describe a driving pattern, we selected the CPs most used in the literature. Table 2.3 

lists those CPs. It also includes their average values obtained from the 46 trips sampled during 

the monitoring campaign and their confidence intervals with confidence level of 95%. 
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Additionally, for comparison purposes, we included the values of these CPs for the heavy-

duty urban dynamometer driving schedule (HD UDDS). As expected, the resulting values 

depend on the local conditions and therefore their inter-comparison is meaningless.  

 

 

Table 2.3 Characteristic parameters (CPs) that describe the driving patterns followed by 

drivers during the monitoring campaigns at every region considered in this study 

 CP Unit 

Regions 

General Urban 1 Urban 2 Mountain 
HD 

UDDS 

D
y

n
am

ic
s RMS m/s2 0.39 ± 0.01 0.41 ± 0.02 0.43 ± 0.02 0.35 ± 0.02 0.47 

PKE  m/s2 0.25 ± 0.01 0.34 ± 0.02 0.34 ± 0.02 0.19 ± 0.01 0.27 

Accelerations per 

kilometre 
km−1 7.9 ± 0.8 11.8 ± 2.5 8.5 ± 0.8 6.6 ± 0.8 10.7 

O
p

er
at

io
n

 m
o
d
es

 

Percentage idling % 14.7 ± 1.7 21.9 ± 3.9 20.3 ± 2.7 2.6 ± 0.9 33.3 

Percentage 

acceleration 
% 27.6 ± 1.0 27.6 ± 1.9 28.8 ± 1.7 27.3 ± 1.4 22.2 

Percentage 

deceleration 
% 24.6 ± 0.8 25.9 ± 1.5 25.0 ± 1.7 24.3 ± 1.2 20.2 

Percentage cruising % 33.1 ± 1.5 24.6 ± 1.8 25.9 ± 1.8 45.7 ± 2.6 24.3 

S
p
ee

d
 Average speed m/s 10.5 ± 0.7 6.8 ± 0.9 7.9 ± 0.7 16.6 ± 1.2 8.4 

SD speed m/s 9.0 ± 0.2 6.2 ± 0.5 7.3 ± 0.2 8.6 ± 0.6 8.9 

Maximum speed m/s 28.6 ± 0.5 21.9 ± 1.0 26.5 ± 0.6 28.5 ± 0.5 25.9 

A
cc

el
er

at
io

n
 

Average 

acceleration 
m/s2 0.43 ± 0.01 0.46 ± 0.01 0.46 ± 0.02 0.37 ± 0.01 0.57 

Average 

deceleration 
m/s2 −0.48 ± 0.01 −0.49 ± 0.02 −0.52 ± 0.02 −0.43 ± 0.02 −0.64 

SD acceleration m/s2 0.24 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.21 ± 0.01 0.37 

SD deceleration m/s2 0.35 ± 0.02 0.35 ± 0.01 0.39 ± 0.02 0.31 ± 0.02 0.40 

Maximum 

acceleration 
m/s2 1.51 ± 0.07 1.37 ± 0.08 1.41 ± 0.06 1.31 ± 0.08 1.96 

Maximum 

deceleration 
m/s2 −2.29 ± 0.15 −1.96 ± 0.10 −2.13 ± 0.14 −2.05 ± 0.16 −2.07 

SD: standard deviation, RMS: root mean square, HD UDDS: heavy duty urban dynamometer driving 

schedule, PKE: positive kinetic energy. 𝑃𝐾𝐸 =
1

𝐿
∑ 𝑣𝑖

2 − 𝑣𝑖−1
2𝑛

𝑖=2  ,   𝑓𝑜𝑟 𝑣𝑖 > 𝑣𝑖−1,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑃𝐾𝐸 = 0. L is the distance traveled and vi is vehicle speed at second i.  

 

 The SFC Distribution 

As described in Section 2.2.5, we first needed a criterion to describe the mean FC of the 

subset of sampled trips. Classical statistics recommends the use of average values for this 

purpose, but this parameter is limited to cases in which the data exhibit a normal frequency 

distribution.  

Figure 2.1 shows the FC frequency distribution obtained for all the buses in the regions 

considered in this study. We performed Anderson-Darling goodness-of-fit tests to evaluate 

if the FC of the vehicles were normally distributed and found p- values greater than 0.12 for 

all regions. This result indicates that, with a probability of 95%, those distributions fit a 

normal distribution. The 16 t buses monitored in this study showed a FC of 0.41 ± 0.04 L/km 
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in the region with high traffic (Urban 1), and of 0.37 ± 0.02 L/km in the region with medium 

level of vehicular traffic (Urban 2), which represent an FC with relative differences of less 

than 11% with respect to the combined region (0.37 ± 0.03 L/km). Unexpectedly, the 

minimum FC was obtained in mountainous regions with an average of 0.36 ± 0.04 L/km. For 

the purposes of possible future comparisons, these vehicles showed an SFC of 0.62 ± 0.03 

L/km when they were travelling uphill on an average road grade of 6.1% and at an average 

speed of 66.6 km/h.  

 

 
 

Figure 2.1 Frequency distribution of the FCs measured of all trips considered in this study. 

 

 Similitude of CPs and SAFDs 

As stated before, we aimed to demonstrate that the fuel-based DC exhibit CPs (CPi
*) close 

to the respective average CPs of the sampled trips (𝐶𝑃𝑖). Figure 2.2 shows the average 

relative differences (ARDi), as function of sample size, for some common CPs used to 

describe driving patterns.  

 

Figure 2.2a shows the ARDs for the case of positive kinetic energy (PKE), which is a CP that 

directly influences FC. It shows that for all the regions, these differences are on average 

<10% after considering 1000 potential cases. These ARDs tend to decrease with the number 

of trips sampled, reaching a value of approximately 1.0% for a sample size of 40.  

 

The same behavior was observed for the case of average speed (Figure 2.2b) and average 

acceleration (Figure 2.2c) but the ARDs were <20%. These percentage of relative differences 

continue being small, especially considering they could range from cero to infinity and that 

they were obtained after considering 1000 possible cases.  

 

Figure 2.2d shows the results of the ARDs for case of the percentage of idling time. It shows 

that the ARDs exhibit the same behavior as in previous cases but these differences on average 

are smaller than 40%, except for the mountain region. In this last region, the obtained ARD 

can be high (<80%), and it does not always decrease with an increase in the number of trips 

sampled. Table 2.3 shows that in this region, the percentage of idling time is small (2.6%) 
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and therefore small absolute variations on idling time make the relative difference (ARDs) 

high. Idling time is a CP that weakly influence FC. It could be considered as an external 

factor or a non-related-human-factor, in consideration that when travelling, drivers naturally 

do not stop unless external factors force them to stop.   

 

Other CPs are shown in Appendix A. For all CPs, the ARDs obtained are smaller than 20% 

except for the mountain region that in some cases reach ARDs of up to 40%.  

 

  
(a) (b) 

  
(c) (d) 

 

Figure 2.2 Average relative differences (ARD) of common characteristic parameters (CPs) 

used to describe driving cycles (DC) as a function of the number of trips sampled and the 

type of regions used in this study. (a) positive kinetic energy (PKE); (b) average speed; (c) 

percentage of time with positive acceleration; (d) percentage of idling time. 

 

 

Several authors also use the speed-acceleration probability distribution (SAPD) as an 

alternative to describe DCs [2], [24], [33]. The SAPD can be thought of as a two-dimensional 

CP. We evaluated the level of closeness of the obtained SAPD for the selected fuel-based 

DC and the SAPD for the trips sampled, following the methodology described in Section 

2.2.5.  

 

Figure 2.3 shows (as an example) the SAPD obtained for a sample of 10 trips in the Urban 1 

region (Figure 2.3a) and the corresponding SAPD obtained for the obtained fuel-based DC 

(Figure 2.3b). Qualitatively, they look similar. We used the quality of fit metric (QoF, 

Equation (2.3)) to quantify the level of similarity. Figure 2.3c shows the QoF metric as a 

function of the numbers of trips sampled. It shows that the QoF in all cases is smaller than 
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0.05, and those differences in probabilities expressed by the QoF tend to decrease with 

sample size, except for the case of the Mountain region. These values are negligible 

compared with the maximum value that this metric can assume (QoF = 2). Additionally, 

these values are also comparable to the ones found by Günther et al. [53] for the case of two 

similar DCs (QoF~10−3). These observations confirm that the SAPD of the DC with the FC 

closest to the average measured FC of the sample is similar to the SAPD of the sampled trips.  

 

These results confirm that by using FC as the criterion of representativeness for a DC, the 

fuel consumption, CPs and SAPD of the fuel-based DCs are close to the measured fuel 

consumption, CPs and SAPD in flat regions.  

 

Our experimental result for ARDs and QoFs also suggest that samples of 10 to 20 trips are 

sufficient to describe the driving patterns in flat regions. However, we highlight that this 

result is valid for a single vehicle technology used with a single purpose, which is the scope 

of our work reported in this manuscript.  

 

  
(a) (b) 

 
(c) 

Figure 2.3 Comparison of the speed-acceleration probability distribution (SAPD) obtained 

for: (a) The sampled trips and, (b) The SFC closest to the average measured SFC of the 

sampled trips; (c) QoF as a function of the number of sampled trips. 
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2.4 Conclusions 

Large differences currently observed in fuel consumption (FC) with respect to the FC 

reported by manufactures are mainly due to the lack of representativeness of the local driven 

conditions contained in the type-approval driving cycles used by manufactures during the 

introduction process of new vehicle technologies in the market.  

 

A driving cycle (DC) represents the typical driving pattern of a given region when its 

characteristic parameters (CPs) exhibit similar values to the average CPs that describe the 

driving pattern in that region. Current alternatives to construct DC are repeatable but no 

reproducible, and there is no evidence that the resulting DC reproduce real vehicle fuel 

consumption (FC).  

 

To address these two issues, we followed the suggestion of several authors of using FC as 

criteria to construct those DCs. We hypothesized that by re-defining a DC as the time series 

of speeds that when followed by a vehicle, its FC is similar to the average FC of all vehicles 

of similar technology operating in the same region, implicitly, the resulting DC describes the 

driving patterns in that region. Thus, we proposed to sample a large set of time series of 

speeds (trips), simultaneously with vehicle FC. Then, the trip with the FC closest to the 

average value of FC of the entire population of trips sampled is selected as the representative 

DC.  

 

To demonstrate this hypothesis, we simultaneously monitored at a frequency of 1 Hz, for 8 

months, the location, speed, altitude, and FC of a fleet of 15 vehicles of similar technology 

operating under normal conditions of use, in four regions of diverse topography and on roads 

of diverse level of service (LoS). We observed the average relative difference (ARD) 

between the CPs of the selected fuel-based DC and the CPs of the monitored driving pattern.  

 

For the flat regions considered in this study, we obtained differences smaller than 15% for 

the CPs related to speed and acceleration that are directly influenced by the driver´s decisions, 

such as average speed, positive kinetic energy, and average positive acceleration.  We also 

observed that the speed-acceleration probability distribution (SAPD) of the selected fuel-

based DC is similar to the SAPD of the sampled trips (QoF ≤ 0.05). Furthermore, the level 

of similarity between CPs and SAPDs increased with the number of trips sampled.   

 

These results confirmed our hypothesis. However, the percentage of idling time that could 

be considered an external factor (not a descriptor of driver patterns) showed the highest 

relative differences (up to 80% for the case of mountain regions).  These differences could 

still be considered acceptable taking into consideration that: (1) this variable range from 0 to 

infinity; (2) we obtained those results after considering 1000 possible cases and (3) for the 

case of the mountain region the time spent by vehicles idling was short and therefore any 

small absolute difference has a large value when expressed as relative difference. 

Nevertheless, additional work is required to confirm the results described in this manuscript 

for several other vehicles technologies, and to establish the methodology to implement the 

resulting DC in a chassis dynamometer, specially, for the case of mountain regions.  
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2.5 Appendix A 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

 

Figure 2.4 Average relative differences (ARD) of characteristic parameters (CPs) 

commonly used to describe driving cycles (DC) as a function of the number of 

trips sampled and the type of regions used in this study. (a) maximum speed; (b) 

percentage of time in cruising; (c) percentage of time with positive acceleration; 

(d) average deceleration; (e) number of accelerations per kilometer; (f) root mean 

square and (g) percentage of time in deceleration. 
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2.6 Appendix A 

 
 

General characteristics 

of the RDE test 

Characteristics of the studied 

regions 

Regions 34% in urban zone (ZU), 33% in rural zone 

(ZR) y 33% in highway (H).  ZU ≥ 29% 

 Urban zone: 42% 

(Urban 1:16%, Urban 2: 26%) 

Montain zone: 58% 

Speed Below 60 km/h in ZU. Between 60 km/h and 

90 km/h in ZR. Above 90 km/h in H. The 

average speed in ZU must be between 15 

km/h – 30 km/h 

Average speed 

Urban 1: 24.48 km/h 

Urban 2: 28.44 km/h 

Montain: 59.76 km/h 

 

Maximum speed 

Urban 1: 78.84 km/h 

Urban 2: 95.4 km/h 

Mountain: 102 km/h 

Time The time duration of the trip must be 

between 90 min and 120 min 

Average time 

Urban 1: 1474 s 

Urban 2: 1986 s 

Montain: 1305 s 

Distance Minimum 16 km / h in each of the regions. Urban zone: 30,3 km 

Mountain zone: 41,3 km 

Altitude Moderate: less than or equal to 700 meters 

above sea level (m.a.s.l) 

Extended: between 700 m.a.s.l -1300 m.a.s.l 

The difference in height between the starting 

point and the end point must not exceed 100 

m 

Urban 1 

Minimum: 2225 m.a.s.l. 

Maximum: 2258 m.a.s.l. 

 

Urban 2: 

Minimum: 2611 m.a.s.l. 

Maximum: 2637 m.a.s.l. 

 

Mountain 

Minimum: 2233 m.a.s.l. 

Maximum: 3313 m.a.s.l. 

Temperature Moderate: 273 K (0 °C) less than or equal to 

303 K (30 °C)  

Extended: above or equal to 266 K (– 7 °C) 

less than or equal to 308 K (35 °C)  

The temperature of the monitored trips 

is on average between 16ºC and 22ºC 

Devices  Normal use of air conditioning and other 

auxiliary devices under road conditions 

Vehicles monitored under normal 

operating conditions 
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3 Comparison of three methods for constructing real driving 

cycles 

Abstract: This work compares the Micro-trips (MT), Markov chains–Monte Carlo (MCMC) 

and Fuel-based (FB) methods in their ability of constructing driving cycles (DC) that: (i) 

describe the real driving patterns of a given region and (ii) reproduce the real fuel 

consumption and emissions exhibited by the vehicles in that region. To that end, we selected 

four regions and monitored simultaneously the speed, fuel consumption and emissions of 

CO2, CO and NOx from a fleet of 15 buses of the same technology during eight months of 

normal operation. The driving patterns exhibited by drivers in each region were described in 

terms of 23 characteristic parameters (CPs) such as average speed and average positive 

kinetic energy. Then, for each region, we constructed their DC using the MT method and 

evaluated how close it describes the observed driving pattern in each region. We repeated the 

process using the MCMC and FB methods. Given the stochastic nature of MT and MCMC 

methods, the DCs obtained changed every time the methods were applied. Hence, we 

repeated the process of constructing the DCs up to 1000 times and reported their average 

relative differences and dispersion. We observed that the FB method exhibited the best 

performance producing DCs that describe the observed driving patterns. In all the regions 

considered in this study, the DCs produced by this method showed average relative 

differences smaller than 20% for all the CPs considered. A similar performance was observed 

for the case of fuel consumption and emission of pollutants.  

 

Keywords: Fuel-based method; Micro-trips method; Markov Chains and Monte Carlo 

method; Driving patterns; Fuel consumption; Vehicle emissions. 
 

List of symbols and acronyms 

 

Symbol Description Unit 

ARDi Average relative difference of the characteristic 

parameter i 

% 

CP Characteristic parameter - 

DC Driving cycle - 

ECU Engine control unit - 

FB Fuel based - 

IQRi Inter-quartile range of RDi % 

MCMC Markov Chain – Monte Carlo - 

MT Micro – trips - 

RDi Relative difference of the characteristic parameter i % 

SAPD Speed acceleration probability distribution - 

SFC Specific fuel consumption L/100 km 
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3.1 Introduction 

As summarized in Figure 3.1, recent studies have shown that both fuel consumption and 

emissions in the real world are between 8% and 60% larger than those reported by 

manufacturers.  Those differences cause inaccuracies in the vehicle emission inventories and 

mislead the efforts of the government authorities oriented towards the vehicles’ fuel 

consumption and pollutants emission reductions. They also twist the fair evaluation of the 

energy and environmental performance of the vehicles and interfere with the healthy 

competition among automotive companies for producing greener vehicles.  We hypothesize 

that the incorrect representation of the local driving patterns of the type-approval DC is the 

major source of the differences observed. Thus, there is a need for DCs that truly represent 

the local driving patterns.  

 

 

Figure 3.1 Relative differences of the values reported by manufacturers with respect to the 

real fuel consumption or real CO2 emissions as function of the vehicles´ model year. 

Sources: (a) [9] , (b) [10], (c) [11], (d) [12], (e) [13], (f) [14], (g) [15], and (h) [16]. Dotted 

line shows the tendency obtained from data of reference (f) which are shown as red dots. 

References e-h include diesel and gasoline. 

 

A driving cycle (DC) is a speed vs. time series that describe or represent the driving pattern 

in a given region of interest [2]. DCs are mainly used by manufactures and environmental 

authorities to evaluate the fuel consumption and pollutant emissions from vehicles as part of 

the regulatory process to introduce new vehicle technologies into the market [9], [10].  When 

the DC is used for regulatory purposes, we refer to it as a type-approval DC.  Currently, the 

Federal Test Procedure (FTP) 75, Urban Dynamometer Driving Schedule (UDDS), New 

European Driving Cycle (NEDC), and Worldwide harmonized Light vehicles Test Cycles 

(WLTC) are some of the most widely type-approval DCs used by manufactures to report fuel 

consumption and emissions from their vehicles [17], [19], [37], [46].   

 

Driving pattern is a term used to refer to the way drivers drive in a given region [54]. 

Although it is not explicitly stated, authors describe the driving patterns in terms of a set of 
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Characteristic Parameters (CPs) also known as Performance Values (PV) [2], [24]. They are 

parameters or variables that result from any combination of speed and time, such as mean 

speed, mean positive acceleration. DCs are also described by characteristic parameters. In 

this manuscript we use CP for the characteristic parameters that describe driving patterns and 

CP* for the characteristic parameters that describe DCs.  There is a tacit agreement that a DC 

correctly describes a driving pattern when its CP*s are equal or close to the CPs that describe 

the driving pattern. The level of similitude is usually measured through the relative difference 

between them. Previous studies have proposed values between 5% and 15% as acceptable 

differences [24], [29]. However, the selection of the CPs and their thresholds values of 

similitude depend on the researcher’s criteria or on empirical results.  

 

The correct representation of the local driving pattern through a DC depends mainly on three 

factors: a) the quantity and quality of the vehicles’ operation data used to describe the driving 

pattern, b) the CPs used as criteria during the construction process of the DC, and c) the DC 

construction method [33].  Next, we explore each one of them.  

 

Currently, advances in information and vehicles technologies allow the monitoring of large 

samples of vehicles at high frequency (~ 1 Hz) with high quality and without interfering with 

their normal use. The preferred alternative is the direct reading of the Engine Control Unit 

(ECU). The ECU takes decisions on the engine operation based on the values reported by the 

sensors included by the manufacturer in the vehicle to monitor the instantaneous operational 

variables such as engine speed (in revolutions per minute), fuel consumption, engine load, 

etc. Thus, vehicle operation data collected from a large sample of vehicles operating in the 

region of interest, during long periods and different seasons can be used to correctly describe 

the driving patterns on that region.  

 

There is not an agreement on the set of CPs that fully describe a driving pattern [55]. The 

mean speed, the idling time percentage and the Speed-Acceleration Frequency Distribution 

(SAFD) are the CPs most frequently used [2], [24]. Those CPs are not necessarily the CPs 

that most influence the vehicle’s fuel consumption [54].  

Finally, there is not a standard or unified method to construct DCs.  Presently, the Micro-

trips (MT) and the Markov chains - Monte Carlo (MCMC) methods are the most common 

approaches [45]. These methods are stochastic in nature and therefore they are repeatable but 

not reproducible, which means that they produce a different DC every time they are applied.  

Even though fuel consumption is not a CP, as it does not describe a driving pattern, Huertas  

et al. [47] theorized that by guaranteeing similitude in terms of fuel consumption, similitude 

in pollutants emissions and representativeness of the driving patterns are implicitly achieved. 

Thanks to the advance in vehicle technology, nowadays it is possible to monitor, at low cost, 

in a large sample of vehicles, the instant vehicle fuel consumption rate through the ECU. This 

feature enables the possibility of constructing driving cycles based on the fuel consumption 

criterion [47]. We will refer to it as the fuel-based method (FB method).  

 

Thus, this work aims to evaluate how well the DCs produced by the MT, MCMC and the FB 

methods represent local driving patterns. It also aims to evaluate the level of accuracy and 

precision that can be expected when they are used to measure real fuel consumption and 

pollutant emissions from vehicles. As an intermediate step, we developed a methodology to 
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assess the representativeness of the DC produced by each method of constructing DC and a 

procedure to ensure the correct implementation of those methods. We highlight the novelty 

and the relevance to our work of using fuel consumption and the emissions of pollutants 

linked to the assessment of the representativeness of the DCs. 

 

3.2 Materials and Methods  

Aiming to compare the MT, MCMC and FB methods, we implemented them in the same 

region and compared the DCs obtained by each method in relation to their ability i.) to 

describe the driving patterns of that region and ii.) to reproduce the fuel consumption and 

emissions exhibited by the vehicles in that region. To that end, we followed the activities 

described in Figure 3.2. To gain generality in our conclusions we repeated the process in four 

regions of different characteristics. The monitoring campaigns were described in a 

companion paper [54]. For the reader’s convenience, next, we will summarize each of those 

activities. 

 

 
 

Figure 3.2 Illustration of the methodology followed to compare three alternatives to 

construct representative driving cycles 

 

 Selected regions 

We considered four regions located at different altitudes and with different levels of traffic 

flow. Table 3.1 describe the characteristics of those regions.  
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Table 3.1 Description of the regions considered in this work. Taken from Huertas et al. [54] 

 Units General Urban1 Urban2 Mountain 

Location - TOL-MEX Mexico City TOL - 

Description  

Combination 

of the 

Urban1, 

Urban2 and 

Mountain.  

Flat, densely 

populated 

region inside 

Mexico City 

Flat region 

located in the 

outskirts of 

the Toluca 

City 

Topography 

includes 

significant 

altitude 

changes 

(>500 m) 

Number of 

lanes 
- 3-4 3 3 4 

Facility - Combined 
Local 

roadway 
Arterial Freeway 

LoS* - B-F F E C-B 

Level of 

traffic 
- Low-High High Medium Low-Medium 

Length km 71.6 11.5 18.8 41.3 

Speed limit km/h 60-110 60 60 110 

Ave road 

grade 
% 4.0 1.4 1.8 5.6 

Max road 

grade 
% 15.0 5.2 9.0 15.0 

Max altitude masl 3313 2258 2637 3313 

Min altitude masl 2200 2255 2611 2200 
* LoS: Level of service. LoS is “the level of quality of a traffic facility and represents a range of operating 

conditions, generally in terms of service measures such as speed and travel time, freedom to maneuver, traffic 

interruptions, and comfort and convenience.” Number of passenger cars per mile per lane: A: 0–11, B: 12–18, 

C: 19–26, D: 27–35, E: 36–45 and F: >45, [49] 

 

 Monitored vehicles and instrumentation 

We looked for a fleet of buses with the same emission control technology and with similar 

maintenance conditions in order to eliminate the effects of their variations in our results. The 

fleet of transit buses selected for this study was provided by the passengers’ transportation 

company Flecha Roja. Buses were manufactured between 2012 and 2014. They use diesel-

fueled engines (Cummins ISM 425, 6 cylinders, and 10.8 liters) that comply with USEPA 

1998 regulation for buses newer than 2004. Engines include EGR but they do not include 

catalytic converters (Selective Catalytic Reduction-SCR nor Diesel Oxidation Catalysts-

DOC). They neither include particulate matter filters (DPF). These engines deliver 2102 Nm 

and 425 HP. Each bus has a capacity of 49 passengers and 13850 kg of gross vehicle weight. 

The buses are 12.85 m long, 3.6 m tall and 2.6 m wide 

 

Table 3.2 shows the technical characteristics of the instruments used in this work. We 

obtained fuel consumption measurements, at a frequency of 1 Hz, using the engine 

manufacturer interface to read these data directly from the Engine Computer Unit (ECU). 
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The ECU controls the fuel injected into each engine’s combustion chamber by controlling 

the time the fuel injector remains open at each engine stroke.  We confirmed the accuracy of 

these data by comparing them with results obtained following the standard procedure to 

determine the vehicle’s fuel consumption [51], [52]. The corresponding correlation analysis 

showed a determination coefficient (R2) greater than 0.9 and calibration slope of 1.06 
 

We used a high-precision GPS to monitor vehicle´s position (latitude, longitude and altitude) 

as a function of time.  Current technology in GPS is inaccurate measuring altitude. Hence, 

we took actual altimetry measurements and developed and algorithm to correct frequent 

errors in the GPS reported altitude [47]. 

 

Emissions measurements of CO, CO2, NO, and NO2 were carried out using a Sensors Inc. 

(Saline, MI, USA) PEMS, SEMTECH ECOSTAR model, with two modules, the 

SEMTECH-FEM and SEMTECH-NOx. The SEMTECH-FEM module measures CO and 

CO2 emissions using a non-dispersive infrared gas analyzer with a resolution of 10 ppm and 

a range of 0-8% for CO, and a resolution of 0.01% and range of 0-20% for CO2. The 

SEMTECH-NOx module measures NO and NO2 using a non-dispersive ultraviolet gas 

analyzer with a range of 0-3000 ppm and 0-500 ppm, respectively, and a resolution of 0.3 

ppm for both gases. Mentioned measurement methods are recommended by the USEPA [56].  

 

 

Table 3.2 Technical characteristics of the instruments used in this work. 

Variable Instrument Technical characteristics 

Instantaneous 

fuel 

consumption 

Engine 

manufacturer 

Reported by ECU based on fuel injection time  

Frequency: 1 Hz 

Position: 

latitude, 

longitude and 

altitude 

GPS/Garmin 

16x 

Position: 3-5 m, 95% typical 

Frequency: 1 Hz 

Speed: 0.05 m/s RMS steady state 

  Technique Range Resolution 

CO2 

PEMS/ 

SEMTECH 

ECOSTAR 

Non-Dispersive 

Infrared 
0 - 20% v/v 0.01% v/v 

CO 
Non-Dispersive 

Infrared 
0 - 8% v/v 10 ppm v/v 

NO 
Non-Dispersive Ultra 

Violet  

0 - 3000 ppm 

v/v 
0.3 ppm v/v 

NO2 
Non-Dispersive Ultra 

Violet  
0 - 500 ppm v/v 0.3 ppm v/v 

Flow 

Measurement 
Exhaust Flow Meter - 0.1 kg/h 

 

Following manufacturer´s instructions, we conducted leak checks and did zero and span 

calibrations prior to each test using NIST traceable calibration gases. We also used the 

automatic self-calibration option that this PEMS technology provides to control possible 

zeroing issues with the CO and NOx PEMS´s sensors. Self-calibrations occurred after every 

hour of continuous operation.  
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 Vehicle monitoring campaign 

We monitored 15 buses that were in service and were driven by the company’s regular drivers 

while we obtained real on-road driving data at a frequency of 1 Hz, minimizing any 

disruption to regular vehicle operation. We carried out one monitoring campaign per region. 

Each campaign included trips carried out during different seasons of the year, different days 

of the week, and at different hours of the day. 

 

Data quality was checked in three phases. During the first phase, trips with more than 5% of 

missing data were disregarded. The second phase identified outlier data for each trip. In this 

phase, we also checked for potential drifting problems of the CO and NOx sensors by 

observing the evolution of CO and NOx data. Additionally, we checked that, measurements 

of CO and NOx concentrations came back to zero. We also plotted the 1-s CO and NOx 

concentration frequency distribution and checked for potential positive or negative offsets. 

Finally, we plotted 1-s fuel rate vs. CO+CO2 mass emission rate and checked for negligible 

offsets.   

 

The last phase consisted of synchronizing the data from the vehicle’s ECU with the emissions 

data reported by the PEMS. Data synchronization was obtained by dephasing each data set 

until maximum correlation was observed between variables that according to physics should 

be correlated, such as fuel consumption, engine speed, and emissions. After data quality 

analyses, we kept 138 trips with simultaneous measurements of position, altitude, speed, fuel 

consumption, and mass emission of pollutants.  

 

 Implementation of the MT, MCMC and FB Methods  

We followed the most common approaches to implement the MT and MCMC methods. In 

the MT method, the trips sampled are partitioned into segments of trips bounded by vehicle 

speed equal to 0 km/h. These segments are called “micro-trips”. Micro-trips are often 

clustered as function of their average speed and average positive acceleration. Then, a set of 

micro trips are quasi-randomly selected based on the frequency distribution of the clusters, 

and later spliced together producing a candidate DC [1], [3], [48].  

 

In the case of MCMC method, the speed vs. time data of the trips sampled are encoded into 

operational states of speed-acceleration dyads [12], [46]. The occurrence frequency of the 

operational states is recorded in a state matrix. Using the same speed vs. time data a 

probability transition matrix is built by computing the frequency of moving from state Xi to 

state Xi+1. Then, the Monte Carlo technique is used to quasi-randomly select a collection of 

consecutive states that conform a state’s vector. Subsequently, this vector is decoded in terms 

of speed vs time producing a candidate DC [24], [46] .  

 

In both methods, the similarity between the candidate DCs and the observed driving pattern 

is evaluated using the relative differences between some selected CPs (Table 3.3). The CPs 

and the number of CPs selected depend on the researcher criteria. If the level of similarity is 

within the pre-established thresholds (relative difference <5%), the candidate DC is selected 
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as the representative DC. Otherwise, the process is repeated. The resulting DCs change each 

time any of these methods is applied, due to their stochastic nature. This means that these 

methods are repeatable but not reproducible.  

 

We also implemented the FB method. In this approach, the average specific fuel consumption 

(SFC) of the trips sampled is computed. Then, the trip with the SFC closest to the average 

SFC is selected as the representative DC. The duration of the selected DC cannot be 

controlled, but the trip-based method is repeatable and reproducible.  

 Test to Verify the Correct Implementation of the DC Construction Method  

Before comparing the results of the three methods to construct DCs, a verification step was 

performed to identify potential errors in the implementation of each method.  

 

The implementation of the FB method was verified by comparing the results of the method 

implemented in this work with the results obtained by Huertas et al. [47]. In the case of the 

MT and MCMC methods, we started by specifying the values for the following input 

parameters: cycle duration, list of CPs used as criteria for the construction of the local DC, 

and the threshold used for the relative differences between the CPs. Table 3.3 shows the input 

parameters used.  

 

To verify the correct implementation of the MT and MCMC methods, we designed the 

following test: use a unique and simple trip as input to the method for constructing DC and 

verify that the resulting DC is the same as the input trip. A different result will indicate that 

the method or the implementation of the method is unable of capturing the known driving 

pattern. Initially, we designed the artificial trip shown in Figure 3.3a Then we used it as 

substitute for the set of monitored trips that each method uses as input data. As all the input 

trips were exactly the same, the MT and the MCMC methods must produce the expected 

input trip as the resulting DC. As an example, Figure 3a shows the result reported by the 

MCMC method. These results confirmed our correct implementation of these two methods.  

 

 

Table 3.3 Input parameters used in the three methods of constructing DC. 

Criteria MT MCMC FB 

Cycle time 

(min) 

General 105±2 ~105* 

Urban 1 25±2 ~25* 

Urban 2 29±2 ~29* 

Mountain 35±2 ~35* 

𝐶𝑃𝑖 or criteria used to 

construct the local DC 

Average speed, 

% idling 

Average speed, 

% idling 
SFC 

Acceptable relative 

difference between 

𝐶𝑃𝑖 ∗ and 𝐶𝑃̅̅̅̅  

5 % 5% 𝑀𝑖𝑛 |𝑆𝐹𝐶𝑐 − 𝑆𝐹𝐶̅̅ ̅̅ ̅| 

Other considerations 

Categorization of 

micro-trips based 

on average speed 

Speed and 

acceleration 

discretization 

- 
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and average 

acceleration 

G: General, U1: Urban 1, U2: Urban 2, M: Mountain 

 

As a second phase of the test, we created the artificial trip shown in Figure 3b, and repeated 

the process. In this case, the trip consisted of three micro-trips, each with different 

acceleration ramps and cruise speeds. As an example, this figure displays the result reported 

by the MT method. It shows the ability of the methods to capture driving patterns and our 

correct implementation of the methods. For the description of the driving patterns, it is 

acceptable that the resulting DC exhibits changes in the sequence that the consecutive micro 

trips show up.  

 

 

(a)             Input 

               

               Output 

 
(b)             Input 

               

               Output 

 
Figure 3.3 Illustration of the test used to verify the correct implementation of the methods 

to construct DCs. Artificial trips used (left side) and DCs (right side) obtained by (a) the 

MCMC and (b) the MT methods. 

 

 Methodology used to compare the MT, MCMC and FB methods 

As stated before, the objective of this work is to compare the MT, MCMC and FB methods 

in their ability of producing DCs that (i) describe the driving patterns of a given region and 

(ii) represent the fuel consumption and emissions exhibited by the vehicles in that region. 

The introduction section explained that driving patterns and DC are described by a set of 

CPs, and that a DC represents a driving pattern when its CPi* match the CPi  of the driving 

pattern. Therefore, for each CP considered in this study we computed the relative difference 

(RDi) among CPs according to Equation 3.1. Table 3.4 shows the CPs considered in this 

study.  
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𝑅𝐷𝑖 = |
𝐶𝑃𝑖

∗ − 𝐶𝑃𝑖

𝐶𝑃𝑖
|  (3.1) 

 

 

Equation 3.1 was also used to evaluate the relative differences of the vehicle’s fuel 

consumption and its NOx, CO and CO2 emissions. For the case of the MCMC method, the 

fuel consumption and emissions associated to the resulting DC cannot be computed because 

each speed-acceleration operational state exhibited excessively large variations of fuel 

consumptions and emissions. 

 

Equation 3.2 was used to calculate the relative differences between SAPDs. As stated before, 

the SAPD is an alternative way of describing driving patterns: 

 

 

𝑅𝐷𝑆𝐴𝑃𝐷 =
∑ ∑ |𝑃𝑖𝑗

∗ − 𝑃𝑖𝑗|𝑟
𝑗=1

𝑚
𝑖=1

2
 (3.2) 

 

where 𝑃𝑖𝑗
∗  is the probability that the vehicle travels at speed i and acceleration j according to 

the DC selected by any of the methods, and Pij is the same variable for the driving pattern. r 

and m are the number of bins used for the discretization of the speed and acceleration, 

respectively.  The maximum value that can reach the absolute difference between 𝑃𝑖𝑗
∗  and Pij 

is 2. 
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Table 3.4 CPs that describe the driving patterns, fuel consumption and emission of pollutants, observed in regions G (General), U1 (Urban 1), U2 

(Urban 2) and M (Mountain).  Average relative differences (in percentage) observed between CPs of driving pattern and driving cycle, after 500 

iterations. Boxes highlighted in green correspond to CPs with average relative differences below 10%.  The numbers highlighted in italic and 

blue, indicates that the corresponding CP was used by the specified method as the assessment criteria for the construction of the DC.  N/A: Not 

applicable. 
 
  

Characteristic parameters (CPs) Observed driving pattern 
Average relative differences after 500 iterations 

 FB MT MCMC 

  Name Symbol G U1 U2 M G U1 U2 M G U1 U2 M G U1 U2 M 

Speed 

Maximum speed Max S 28.4 22.3 26.2 27.9 2.0 1.4 3.1 1.7 3.7 3.4 5.1 2.3 4.0 6.0 8.7 3.7 

Average speed Ave S 11.9 7.3 10.0 17.0 20.6 0.0 0.0 0.0 2.4 2.5 2.5 3.8 2.6 2.5 2.4 2.5 

Standard deviation of speed SD S 8.9 6.9 7.7 9.1 4.1 0.0 3.2 3.1 3.1 11.2 5.5 8.7 5.5 12.3 8.0 17.1 

Acceleration 

Maximum acceleration Max a+ 1.3 1.3 1.3 1.3 0.0 0.0 0.0 0.0 32.3 32.4 27.8 7.1 24.8 45.6 34.8 26.2 

Maximum deceleration Max a- -2.1 -2.1 -2.1 -2.1 0.0 0.0 0.0 0.0 19.8 20.0 19.1 36.1 22.5 18.6 19.4 11.2 

Average acceleration Ave a+ 0.4 0.5 0.4 0.4 0.7 1.7 4.0 0.0 2.6 3.4 4.9 3.1 77.1 42.4 59.6 141.3 

Average deceleration Ave a- -0.5 -0.5 -0.5 -0.4 1.4 0.0 10.7 6.9 3.1 6.0 7.2 10.3 69.7 46.5 60.8 121.5 

Standard deviation of acceleration SD a+ 0.2 0.2 0.2 0.2 0.0 5.0 6.5 1.2 3.0 7.9 20.3 25.0 35.1 17.5 32.1 47.3 

Standard deviation of deceleration SD a- 0.4 0.4 0.4 0.4 1.9 5.1 3.4 4.5 3.7 12.3 12.8 28.3 17.3 13.8 14.3 19.3 

Operational 

modes  

(% of time) 

Idling % idl 9.3 15.1 13.6 0.7 7.7 61.3 6.9 0.6 2.4 2.5 2.5 3.0 2.5 2.5 2.6 3.3 

Acceleration % a+ 30.2 32.9 33.8 25.4 7.9 9.1 6.3 9.9 3.2 3.3 5.0 5.2 36.7 23.5 34.5 49.8 

Deceleration % a- 25.6 29.3 29.1 24.1 4.9 13.8 2.0 2.3 4.1 3.1 6.0 5.4 33.7 26.4 34.9 49.9 

Cruising % cru 34.7 22.7 25.9 46.2 12.9 10.2 23.5 3.4 5.4 3.9 10.1 12.9 57.1 67.2 74.6 61.2 

Dynamics 

Number of accelerations per km  Accel/km 7.3 8.6 6.1 7.1 17.9 0.0 4.1 4.8 6.3 19.0 9.6 7.2 26.8 71.9 163.8 13.6 

Root mean square of acceleration RMS 0.4 0.5 0.5 0.3 3.1 5.1 6.9 8.0 3.5 5.4 5.8 5.4 21.3 12.1 12.6 34.4 

Positive kinetic energy PKE 0.2 0.4 0.3 0.2 10.6 9.0 11.6 0.0 4.7 5.2 6.4 6.6 5.0 5.8 6.1 7.5 

Speed-acceleration prob distribut   SAPD 0.0 0.0 0.0 0.0 7.5 2.3 2.2 9.8 3.6 6.2 5.6 9.3 7.2 27.1 8.7 35.9 

Vehicle specific power VSP 8.3 4.8 7.0 11.9 29.8 0.0 0.0 12.9 8.8 3.2 7.3 18.0 N/A N/A N/A N/A 

Kinetic intensity KI 0.6 0.8 0.7 0.5 0.0 2.7 14.6 5.2 9.3 38.1 10.1 21.2 N/A N/A N/A N/A 

Fuel 

consumption 

and emissions 

Specific fuel consumption SFC 0.4 0.4 0.4 0.4 0.0 0.0 11.3 9.8 7.6 5.5 8.1 23.0 N/A N/A N/A N/A 

Emission index of CO2 EF CO2 792.0 839.0 749.2 775.9 10.3 10.6 0.8 5.9 7.0 6.4 6.9 17.3 N/A N/A N/A N/A 

Emission index of CO EF CO 25.7 37.2 39.4 14.2 6.6 0.0 20.5 16.0 8.8 8.3 14.2 8.8 N/A N/A N/A N/A 

Emission index of NOx EF NOx 4.5 5.0 3.9 4.7 12.5 0.0 4.2 12.1 6.8 7.8 8.5 14.9 N/A N/A N/A N/A 
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A major complication of this evaluation process is that the MT and MCMC methods produce 

different results every time they are used. To overcome this complication, we repeated the 

DC construction process several times and observed the average of the RDi obtained (ARDi). 

Figure 3.4a shows, as an example, the ARDi obtained for the speed related CPs after 100, 

500, and 1000 iterations of applying the MT method. Similarly, Figure 3.4b shows the ARDi 

obtained for the CPs related to the of applying the MCMC method. Both figures also 

show the confidence interval of variation of the ARDi. 

 
 

(a) 

 

(b) 

  
 

Figure 3.4 ARDi and their confidence intervals for some CPs with different 

number of runs.  (a) Speed related CPs when applied MT. (b) Operation mode 

related CPs when applied MCMC. 

 

Figures 3.4a-b show that after 500 iterations the ARDi and their confidence intervals remain 

constant. Pairwise hypothesis tests on the difference of means and the difference of variances 

confirmed this observation with a significance value of α=0.05 for all ARDi. Thus, from this 

point on we will only report ARDi after 500 iterations. The comparison of the FB, MT and 

MCMC methods of constructing DCs was complemented with a dispersion analysis of the 

RDi. We observed the variation of the RDi during the first 500 iterations. Some of the RDi 

exhibited an asymmetric distribution. Thus, we decided to use the inter-quartile range (IQR) 

as a metric for dispersion and to present the results in terms of whiskers and boxes plots.  

 

3.3 Results and discussion 

Initially, we used the data from the 46 trips sampled in each region and obtained the average 

values for the 23 CPs that describe the respective driving pattern, fuel consumption and 

emission of pollutants.  Table 3.4 shows the results obtained.  

 

Then, we evaluated the ability of the three methods of producing DCs that represent the 

observed driving patterns.  For the case of the general region, Figures 3.5a-b show the ARDi 

and the interquartile range of the RDi exhibited by the DCs obtained by the MT and MCMC 

methods, respectively, after repeating the application of each method 500 times. Figure 3.5c 

shows the same information for the case of the FB method. As mentioned before in this last 
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case, results are the same every time the method is applied and therefore ARDi= RDi for all 

CPs. In Figures 3.5a-b, the ARDi are shown as blue dots, the IQRi by boxes, and the outliers 

by red “+” signs. The CPs used by each method as criteria for the construction of the DC are 

marked with (*). 

 

A low ARDi (<10%) indicates that the method produced DCs that represent the driving 

pattern. The potential range of variation of the ARDi is from zero to infinity and therefore 

ARDi <10% indicates a high level of similitude. Table 3.4 presents the values of ARDi 

obtained for the 23 CPs. In this table, the ARDi below 10% are highlighted in green.  

 

 

(a) 

 

 
 

(b) 
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(c) 

 

 
Figure 3.5 Boxplots of the relative differences (RDi) of the CPs that describe the DCs 

obtained by the (a) MT, (b) MCMC, and (c) FB methods in the general region after 500 

iterations. The ARDi are shown as blue dots, the IQRi by boxes, and the outliers by red “+” 

signs. The CPs used by each method as criteria for the construction of the DC are marked 

with (*). 

 

 

Since the set of CPs that describes a driving pattern is still undefined, the method´s ability of 

producing DCs that capture the local driving pattern is judged as the number of CPs where 

the ARDi<10%.  However, in this evaluation it is important to: 

 

• Do not include the CPs used as the assessment criteria by the method under 

consideration to construct the DC because those CPs by design should be smaller than 

5%.  

• Consider as an independent case the SAPD due to the high relevance of this metric 

for some researchers and because its range of variations is from 0 to 200%. 

 

For the general region, Table 3.4 and Figure 3.5.a show that the FB method had 14 out of 19 

CPs with ARDi<10%, while the MT had 15 out of 17, and the MCMC only had 4 out of 15 

CPs under this threshold.  

 

The same analysis was repeated for the case of the Mountain, Urban 1 and Urban 2 regions. 

Figure 3.6 shows that the results obtained for these three regions are similar to the results 

observed for the general region. Table 3.4 quantifies, in terms of ARDi, the performance of 

each method in the four regions considered in this study. Considering all the regions, the FB 

method showed 83% of the ARDi under 10%, while the MT showed 69% and the MCMC 

20%, excluding the CPs used as assessment criteria. The average of the ARDi of the 19 CPs 

in the four regions was 5.8%, 10.1% and 34.9% in the FB, MT and MCMC methods, 

respectively.   

 

On average over the four regions, the FB method constructed DCs with RDi smaller than 

19.1%. The maximum RDi were observed for the percentage of idling time in the Urban 1 

region and VSP in the General region that reached a RDi of 61.3% and 29.8%, respectively.  

The best performance of the FB method was observed in the mountain region where all RDi 
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were below 16%.  The FB method showed the most stable performance among the three 

methods in the four regions considered in this study. 

 

The MT method (Figure 3.5a) produced DCs that represent well all CPs.  Kinetic energy 

intensity and max des-acceleration were the CPs that showed the smallest agreement with 

ARDi of up to 38.1% and 36.1%, respectively.  Compared to the general region, the MT 

method deteriorated its performance for the case of the region with highly congested traffic 

(Urban 1), where the CP associated to the kinetic energy intensity showed an ARDi of 38.1% 

with a large dispersion (RDi of up to 59%). Its performance worsens for the case of the 

mountain region where only 10 out of 17 CPs were below the 10% threshold for the ARDi. 

  

The MCMC method showed the worst performance in producing DCs that represent local 

DC. It showed the smallest numbers of ARDi below the 10% threshold and the maximum 

range of variation of the RDi.  The CPs with the largest ARDi were the number of 

accelerations per kilometer and the average positive acceleration reached ARDi of 163.8% 

(in the Urban 1 region) and 141.3% (in the mountain region), respectively, and with outliers 

for the corresponding RDi larger than 100% (not shown in Figure 3.5b). We also expected 

that this method produced DCs with the SAPD close to the SAPD of the driving pattern 

observed in each region, in consideration to its approach of constructing DCs. However, its 

performance was worse than the other two methods in this metric. On average over the four 

regions, it showed an ARDi of 19.7% vs an ARDi of 5.5% for the FB method and 6.2 for the 

MT method.  

 

Previous results demonstrate the outstanding performance of the FB and MT methods 

producing DCs that represent the observed local driving patterns. Next, we will describe their 

performance reproducing fuel consumption and emissions of pollutants. By design, the FB 

method reproduced fuel consumption in all regions (RDi < 11% and on average 5.3%). 

Figures 3.5.c, 3.6.c and Table 3.4 show that this method reproduced the CO, CO2 and NOx 

emissions with an RDi < 20%. The average RDi was 8.3%. This performance was followed 

closely by the MT method. On average, the MT method produced DCs that reproduced fuel 

consumption with an average ARDi of 11.1% and an average ARDi of 9.6% for the CO, CO2 

and NOx emissions, in the four regions considered in this study. 
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(b)  

  

 
 

(c)  

  

 
Figure 3.6 Boxplots of the relative differences (RDi) of the CPs that describe the DCs 

obtained by the (a) MT, (b) MCMC, and (c) FB methods in the Urban 1, Urban 2 and 

Mountain regions after 500 iterations. The ARDi are shown as blue dots, the IQRi by 

boxes, and the outliers by red “+” signs. The CPs used by each method as the criteria for 

the construction of the DC are marked with (*). 

 

 

As described before, the methodology used in this work does not allow to evaluate the 

performance of the MCMC method reproducing fuel consumption nor emission from the 

vehicles.  

 

Previous results demonstrate that the FB method showed the best performance obtaining DCs 

that represent the driving patterns, the fuel consumption and emissions from the vehicles in 

the four regions considered in this study. Previous results also confirm that by using local 

DC instead of the type-approval DC, the differences between the fuel consumption and 

emissions from vehicles reported by manufactures and those observed in the normal use of 

the vehicles can be reduced substantially (<11% depending on the method used for 

constructing the local DC).  
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3.4 Conclusions 

We hypothesized that the incorrect representation of the local driving patterns contained in 

the type-approval driving cycles used by manufacturers to report fuel consumption and 

emissions from vehicles, is one of the major sources of the differences observed between 

those values and the observed in the normal use of the vehicles. Thus, there is a need for local 

driving cycles (DCs) that truly represent local driving patterns and that could be used during 

the type-approval tests. However, there is not a unified method to construct those local DC.  

As an intermediate step, this work compared three common methods of constructing local 

DCs in their ability of producing DCs that i.) represent the local driving patterns and ii.) 

reproduce the fuel consumption and emissions exhibited by the vehicles in that region. The 

methods studied were the Micro-Trips (MT), the Markov Chains - Monte Carlo (MCMC) 

and the Fuel-Based (FB). 

 

To that end, we implemented those methods in four regions with different topographies, 

different altitudes, and featuring well-maintained roads with different Level of Services 

(LoS). We monitored during a prolonged period of time (~8 months) the operation of a fleet 

of 15 busses with the same emission control technology and with similar maintenance 

conditions in order to eliminate the effects of their variations in our results. We measured 

simultaneously fuel consumption, CO, CO2 and NOx emissions, speed, and location at 1 Hz. 

 

Driving patterns and DCs can be described by characteristic parameters (CPs) such as mean 

speed, mean positive acceleration, among others. Hence, a DC represents a local driving 

pattern of a given region when its CPs are equal to the CPs that describe the driving pattern 

in that region. The level of similarity is measured by the relative differences among them. 

Since the MT and the MCMC are repeatable but no reproducible, we repeated the 

implementation of those methods up to 1000 times and reported the average relative 

differences (ARDi) of the obtained CPs.  

 

Results demonstrated that the FB method showed the best performance obtaining DC that 

represent the driving patterns, the fuel consumption and emissions from the vehicles in the 

four regions considered in this study, followed closely by the MT method. The MCMC 

method has difficulties producing representative DCs. In all regions, the FB method exhibited 

83% of the CPs with ARDi under 10%, while the MT and MCMC presented 69% and 20%, 

respectively. By design, the FB method reproduced fuel consumption in all regions (ARDi ~ 

5.3%). Furthermore, this method also reproduced the CO, CO2 and NOx emissions with ARDi 

of 8.3%. This performance was followed closely by the MT method. On average, the MT 

method produced DCs that reproduced fuel consumption with an ARDi of 11.1% and of 9.6% 

for the CO, CO2 and NOx emissions. 

 

Previous results also confirm that by using local DC instead of the type-approval DC, the 

differences between the fuel consumption and emissions from vehicles reported by 

manufactures and the observed in the normal use of the vehicles can be reduced substantially 

(<11% depending on the method used for constructing the local DC).  

 

Besides providing a methodology to assess the representativeness of driving cycles and the 

performance of the methods to construct them, this works contributes suggesting alternatives 

to strengthen the MT method and a procedure to test the correct implementation of any 

method to construct driving cycles. Our work can also be used to identify the minimum set 
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of CPs that fully describe driving patterns, and the design of a method to construct driving 

cycles for mountain regions.  However further work is required to extend the scope of our 

conclusions to several vehicle technologies and to identify alternatives of implementing the 

resulting DC in chassis dynamometers. 

 

3.5 Appendix A - Analysis of variation of the characteristic parameters in 

stochastic methods 

 

Micro-trips (MT) and Markov Chain Monte Carlo (MCMC) are two of the most widely used 

stochastic methods in the construction of local driving cycles. In these methods, a synthetic 

driving cycle is generated from the random junction of micro-trips or operating states.  

 

In MT method, the speed-time data, collected during the vehicle monitoring campaign, is 

divided into trip segments bounded by a vehicle speed equal to 0 km/h. These segments are 

called "micro-trips". The micro-trips are gathered according to their speed and acceleration. 

Then a set of micro-trips is randomly selected based on their probability of occurrence. The 

number of micro trips selected depends on the desired duration of the driving cycle. 

 

In MCMC method, the speed-acceleration data is encoded in operating states. The frequency 

of occurrence of the states is recorded in a state matrix. From the same speed and time 

database, and from the state matrix, the probability of moving from state Xi to state Xi + 1 is 

calculated. The results are recorded in a probability transition matrix. This matrix is used to 

make a quasi-random selection of states that form a vector of states. Finally, the driving cycle 

is calculated by decoding this vector of states in terms of speed and time. 

 

These two methods are stochastic in nature, in this sense the speed profile changes each time 

when a method is applied, which makes the method repeatable but not reproducible. The 

change in the speed profile also generates changes in the characteristic parameters (CP*) 

used to describe the driving cycle. In this sense, it is not possible to associate a single value 

to each CP* analyzed. This phenomenon is explained in the following example: 

 

1. Using the same set of trips data, the MT method was applied five times, obtaining five 

driving cycles with different speed and time profiles. Figure 3.7 shows the driving cycles. 

 

2. Different characteristic parameters were calculated to describe the driving patterns of the 

study region, and each one of the five driving cycles generated. In this particular case, 

the average speed and the percentage of idle time were used as selection criteria for the 

construction of the cycles. Table 3.5 shows the values of the calculated CPs. 

 

3. The relative difference between the characteristic parameters of driving patterns (CPs) 

and the characteristic parameters of driving cycles (CPs*) was calculated. Table 3.6 

shows relative differences, mean and inter-quartile range. 
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Figure 3.7 Driving cycles calculated from the same set of trips data and using a stochastic 

method. 

 

 

 

Table 3.5 Characteristics parameters (CPs) that describe the driving patterns and the five 

driving cycles 

 

      Driving Cycles 

CPs   

Driving 

Patterns 1 2 3 4 5 

Max 

Speed m/s 16.81 15.83 18.33 15.83 18.33 18.33 

Ave 

Speed* m/s 5.57 5.64 5.55 5.36 5.38 5.61 

SD Speed m/s 4.69 4.71 5.06 4.64 4.69 4.82 

Max Accel m/s^2 1.90 1.48 1.83 1.37 1.39 1.81 

Max Decel m/s^2 0.50 -1.78 -1.76 -1.94 -1.69 -1.60 
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Ave Accel m/s^2 0.31 0.50 0.52 0.46 0.48 0.50 

Ave Decel m/s^2 -1.93 -0.53 -0.58 -0.51 -0.56 -0.56 

SD Accel m/s^2 -0.54 0.30 0.31 0.27 0.26 0.30 

SD Decel m/s^2 0.34 0.35 0.35 0.37 0.34 0.33 

% Idling* % 24.71 24.23 25.63 25.56 24.86 25.06 

% Accel % 27.01 28.70 30.88 28.73 29.00 30.65 

% Decel % 25.37 27.24 27.85 25.90 25.35 27.86 

% Cruise % 17.40 19.84 15.64 19.82 20.80 16.43 

Accel / km   16.80 17.00 15.21 18.16 17.42 15.52 

RMS m^2/s^2 0.45 0.46 0.49 0.43 0.44 0.47 

PKE m/s^2 0.38 0.36 0.39 0.34 0.35 0.38 

VSP kW/ton 1.04 1.05 1.07 0.98 1.00 1.06 

KI 1/m 1.90 1.77 1.64 1.76 1.70 1.75 

*: CPs used as assessment criteria for the proposed driving cycles  

 

 

 

Table 3.6 Relative difference, average relative, and inter-quartile range of characteristics 

parameters (CPs) 

 
  Relative difference [%] Average 

Relative 

difference 

ARD [%] 

Inter-

quartile 

range IQR  

[%] 

CPs 1 2 3 4 5 

Max 

Speed 

5.8 9.1 5.8 9.1 9.1 7.8 3.3 

Ave 

Speed* 

1.3 0.4 3.7 3.5 0.8 2.0 2.9 

SD Speed 0.4 7.8 1.2 0.0 2.6 2.4 3.6 

Max 

Accel 

22.0 3.7 28.0 26.8 4.9 17.1 22.6 

Max 

Decel 

7.8 9.0 0.6 12.6 17.4 9.5 7.8 

Ave Accel 0.1 2.4 8.4 4.8 0.0 3.1 5.6 

Ave Decel 0.9 8.0 4.8 3.5 4.6 4.4 2.7 

SD Accel 3.4 1.0 14.0 16.7 3.4 7.7 11.9 

SD Decel 2.8 0.6 6.5 2.3 5.1 3.5 3.6 

% Idling* 1.9 3.8 3.5 0.6 1.4 2.2 2.3 

% Accel 6.3 14.3 6.4 7.4 13.5 9.6 7.4 

% Decel 7.4 9.8 2.1 0.1 9.8 5.8 8.2 

% Cruise 14.0 10.1 13.9 19.5 5.6 12.6 6.4 

Accel / 

km 

1.2 9.4 8.2 3.7 7.6 6.0 5.4 

RMS 2.7 9.4 3.7 1.3 5.8 4.6 4.3 

PKE 4.7 2.9 9.6 6.3 0.2 4.7 5.0 
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VSP 0.9 3.2 5.2 3.4 1.9 2.9 2.2 

KI 6.5 13.7 7.2 10.1 7.9 9.1 4.0 

*: CPs used as assessment criteria for the proposed driving cycles  

 

 

From this example it is possible to observe the variations on the profile of the cycles and their 

characteristic parameters generated by the stochastic nature of the MT and MCMC methods. 

The only characteristic parameters that maintained relative differences below 5% were the 

average speed and the percentage of time in idle, since they were selected as evaluation 

criteria of the proposed cycles.  

 

Additionally, these variations in the driving profiles generate changes in fuel consumption 

and emissions of the vehicles that run under these specific driving cycles, this is due to the 

fact that both consumption and emissions are variables that depend on behaviors and changes. 

of the cycle at the local level (short time intervals) and not of its global performance. 

 

To overcome this issue, we repeat the process of constructing the driving cycles multiple 

times and observe the trends in the average relative differences and dispersion in the 

interquartile ranges. Analyzes were carried out for 100, 500 and 1000 repetitions in order to 

verify the minimum number of iterations to perform. From these results, an analysis of 

variance was performed where the null hypothesis raises average relative differences (ARD) 

for each equal CPs for 100, 500, and 100 iterations, while the alternative hypothesis 

establishes that at least one of the ARDs is different. If the p-value is less than the significance 

level, which was adjusted to 0.05, then it is concluded that at least one average relative 

difference (ARD) is different. 

 

The following table presents the p-values for the general region, urban 1 and urban 2. In it, 

the p-values less than 0.05 are highlighted in red. 

 

 

Table 3.7 P-values for different CPs in three study regions. 

 
CPs MT - General MT - Urban 1 MT - Urban 2 

100-500 500-1000 100-500 500-1000 100-500 500-1000 

Speed Max 

speed 

0.56 1.00 0.11 0.26 0.73 0.44 

Ave 

speed* 

0.58 0.81 0.96 0.24 0.67 0.57 

SD 

speed 

0.27 0.57 0.11 0.12 0.95 0.09 

Acceleration Max a+ 0.62 0.51 0.65 0.49 0.96 0.75 

Max a- 0.72 0.05 1.00 0.09 0.59 0.84 

Ave a+ 0.10 0.67 0.97 0.81 0.84 0.51 

Ave a- 0.42 0.83 0.41 0.25 0.39 0.27 

SD a+ 0.37 0.52 0.25 0.13 0.68 0.95 

SD a- 0.77 0.14 0.92 0.67 0.99 0.46 
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Operation 

modes (% of 

time) 

% 

idling* 

0.57 0.62 0.33 0.34 0.48 0.57 

% a+ 0.87 0.45 0.07 0.47 0.63 0.52 

% a- 0.78 0.40 0.85 0.81 0.21 0.60 

% 

cruising 

0.86 0.40 0.92 0.86 0.43 0.68 

Dynamics Accel / 

km 

0.41 0.29 0.03 0.12 0.67 0.42 

RMS 0.14 0.29 0.58 0.17 0.54 0.18 

PKE 0.79 0.15 0.23 0.24 0.03 0.76 

SAPD 0.40 0.97 0.15 0.18 0.59 0.21 

*: CPs used as assessment criteria for the proposed driving cycles 

 

An analysis with the same characteristics was performed for the MCMC method, obtaining 

similar results. Based on the results of the previous table, it is recommended that for the 

driving cycles constructed with stochastic methods an iterative process of at least 500 

repetitions be carried out, which allows establishing the trend of the CPs and reducing their 

dispersion.  
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4 Driving cycles that reproduce driving patterns, energy 

consumptions and tailpipe emissions 

 

Abstract: This study presents the Energy Based Micro-trip (EBMT) method, which is a new 

method to construct driving cycles that represent local driving patterns and reproduce the real 

energy consumption and tailpipe emissions from vehicles in a given region. It uses data of 

specific energy consumption, speed, and percentage of idling time as criteria of acceptable 

representativeness. To study the performance of the EBMT, we used a database of speed, 

fuel consumption, and tailpipe emissions (CO2, CO, and NOx), which was obtained 

monitoring at 1 Hz, the operation of 15 heavy-duty vehicles when they operated within 

different traffic conditions, during eight months. The speed vs. time data contained in this 

database defined the local driving pattern, which was described by 19 characteristic 

parameters (CPs). Using this database, we ran the EBMT and described the resulting driving 

cycle by 19 characteristics parameters (CPs*). The relative differences between CPs and 

CPs* quantified how close the obtained driving cycle represented the driving pattern. To 

observe tendencies of our results, we repeated the process 1000 times and reported the 

average relative difference (ARD) and the interquartile range (IQR) of those differences for 

each CP. We repeated the process for the case of a traditional Micro-trip method and 

compared to previous results. The driving cycles constructed by the EBMT method showed 

the lowest values of ARDs and IQRs, meaning that it produces driving cycles with the highest 

representativeness of the driving patterns, and the best reproduction of energy consumption, 

and tailpipe emissions.  

 

Keywords: Micro-trips method; Specific fuel consumption; Emission indexes; Heavy-duty 

vehicles; Driving patterns; Characteristic parameters. 

 

 

Frequent symbols and acronyms 

 

Symbol Description Units 

ARDi Average relative difference of the ith characteristic parameter % 

CPi 
Values of the ith characteristic parameter that describe the driving 

pattern 
- 

CPi
* 

Values of the ith characteristic parameter that describe the driving 

cycle 
 

IQRi Interquartile range of the ith characteristic parameter - 

KI 
Kinetic intensity. Ratio of characteristic acceleration to 

aerodynamic speed. 
1/m 

SFC Specific Fuel Consumption L/km 

RDi Relative difference of the ith characteristic parameter % 
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EBMT Energy based micro-trip  

GPS Global Positioning system  

LoS Level of Service  

MT Micro-trip  

 

4.1 Introduction 

Currently, there is an increasing interest in driving cycles that truly represent local driving 

patterns, and that could be used to reproduce energy consumption in electric vehicles, and 

fuel consumption and tailpipe emissions in engine-powered vehicles.  

 

A driving pattern expresses the manner that drivers, on average, drive in a given region [54].  

A driving cycle is a time series of speeds that describes this driving pattern [2], and that when 

it is followed by a vehicle, its energy consumption and tailpipe emissions are similar to the 

average energy consumption and tailpipe emissions of all vehicles of similar technology 

operating in the same region [47], [57] . They are used for the design of vehicles´ power train 

and of strategies to reduce energy consumption in the transport sector [58], [59]. Driving 

cycles are mainly used to measure and compare the vehicles’ energy consumption and 

tailpipe emissions [44], [48]. Therefore, the representativeness of the local driving pattern is 

the key issue of a driving cycle. Both, the driving patterns and the driving cycles can be 

described by characteristic parameters [2], [24],  which are metrics based on speed and time, 

like average speed, average positive acceleration. We use CP to denote the characteristic 

parameters that describe driving patterns, while CP* indicates the characteristic parameters 

that describe the driving cycles. Then a driving cycle represents the driving patterns of a 

given region accurately if CP*s  CPs [60]. The relative difference (RD) between 

corresponding CPs and CP*s assesses the level of representativeness of a driving cycle. 

 

The driving cycle representativeness depends mainly on three factors: (a) the quality and 

quantity of vehicle operation data, (b) the driving cycle construction method, and (c) the CPs 

used to assess the driving cycle representativeness [33]. Currently, state of the art in 

information and communication technologies allows monitoring the operating variables 

(speed, time, fuel consumption) of a large sample of vehicles with a sample rate of 1 Hz at a 

low cost. Nonetheless, there is not a unified methodology to construct driving cycles and 

assess their representativeness. Therefore, the interest in driving cycles has been focused on 

the study of factors (b) and (c).  

 

Table 1 lists examples of driving cycles developed for different countries and regions. Some 

of them are type-approval driving cycles, i.e., they are used to verify the compliance of 

maximum levels of energy consumption and vehicle emissions established by local 

authorities as requirements for new vehicle technologies before they are approved to enter 

into the local automotive market. However, the existing driving cycles used as type approval 

driving cycles frequently do not represent the local driving patterns.  
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Table 4.1 Some relevant driving cycles and the methods used for their construction. 
Driving Cycle Method Parameters used as driving cycle’s assessment criteria 

FTP 72, FTP 75  ST Average speed, average acceleration and maximum speed. [61]  

LA92, Unified Cycle MT SAPD. [45] 

LA01 MCMC Average speed, SAPD, maximum and minimum speed. [45]  

Heavy-Duty Diesel Truck 

Cycle (HHDDT) 

MT Average speed, percentage of idling time, creeping, 

acceleration, cruising and deceleration. Maximum speed. [2]  

IEC ST Average speed, average running speed, average acceleration, 

average deceleration, mean length of micro-trips, average 

number of acceleration / deceleration changes, average number 

of stops and percentage of idling time, acceleration, cruising 

and deceleration. [24] 

ARTEMIS Cycle  MT Average speed, average running speed, average acceleration, 

average deceleration, average number of stops, percentage of 

idling time, SAPD and maximum speed. [32] 

TRL Cycle  MT Average speed, average acceleration, mean length of micro-

trips, maximum and minimum speed. [2]  

Sydney Cycle  MT Average speed, percentage of idling time, RMS acceleration 

and SAPD. [24]  

Melbourne Peak Cycle MT Average speed, percentage of idling time, RMS speed, RMS 

acceleration, KE and SAPD. [24] 

Perth Cycle  KT Average speed, average number of stops, percentage of idling 

time, RMS acceleration, KE, rate of change of acceleration and 

SAPD. [24]  

Taipei Motorcycle 

Driving Cycle 

(TMDRIVING CYCLE) 

ST Average running speed, average acceleration, average 

deceleration, mean length of micro-trips, percentage of idling 

time, and acceleration SAPD. [55] 

Kaohsiung Driving Cycle 

(KHM) 

MT Average speed, average running speed, average acceleration, 

average deceleration, mean length of micro-trips, average 

number of acceleration / deceleration changes, acceleration, 

cruising and deceleration. RMS acceleration. [2] 

China Cycles  MT Average speed, average running speed, average acceleration, 

average deceleration, average number of acceleration / 

deceleration changes, percentage of idling time, acceleration, 

cruising and deceleration. KE. [22] 

Beijing Cycles  MT Average speed, average running speed, average acceleration, 

average deceleration, percentage of idling time, acceleration, 

cruising and deceleration. VSP and maximum speed. [2]  

World Harmonized 

Vehicle Cycle (WHVC) 

MT Average speed, average stop time, number of stop per km, 

power-time distribution, speed-acceleration distribution, 

average power during the engine delivers power to drive shaft, 

relative positive acceleration, % of time the engine delivers 

power to drive-shaft during operation, relative energy demand. 

[17] 

World Motorcycle Test 

Cycle (WMTC) 

MT Speed-acceleration matrix. [62] 

WLTC (World-wide 

harmonized Light duty 

Test Cycle). 

MT SAPD, average speed, average acceleration, acceleration and 

deceleration ratio. [19] 

MT: Micro-trips, MCMC: Markov chain Monte Carlo, ST: select trip, KT: Knight tour, SAPD: speed-acceleration 

probability distribution, RMS: root mean square, KE: kinetic energy, VSP: vehicle specific power.   

 

Table 1 shows that the most used method to construct driving cycles is the Micro-trips (MT) 

method. Due to its stochastic nature, this method is repeatable but not reproducible. It means 
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that the speed-time profile of the resulting driving cycles is different each time the method is 

applied, despite that it uses the same input data. Table 1 also shows that there is not an 

agreement about a unique set of CPs that should be used to evaluate the driving cycles 

representativeness.  The average speed and percentage of idling time are the CPs most used 

as assessment criteria. It could be expected that the driving cycles constructed by the MT 

method, using these two CPs as assessment criteria, are unable of reproducing energy 

consumption in the vehicles, since energy consumption depends more on the short time 

variations of the speed-time profile [46] rather than on the overall values of the CPs used as 

assessment criteria.  

 

Even though driving cycles are mainly used for the measurement of energy consumption and 

the emissions of pollutants, these two parameters are rarely used as the assessment criteria to 

ensure the driving cycles representativeness. Reference [2] suggested recording fuel 

consumption and vehicle emissions data simultaneously with the speed and time data. 

Reference [63] developed a methodology for clustering micro-trips using estimated values 

for fuel consumption and driving parameters as the classification criteria. From a different 

perspective, reference [64] developed a modal emission model based on driving cycles using 

CPs. Reference [65] used the model developed by [64] to study how to solve the vehicle 

routing problem applying the minimization of fuel consumption as an objective function.  

Reference [48] used the Vehicle Specific Power model to quantify the fuel consumption 

expected from vehicles using different driving cycles. However, none of these works have 

used fuel consumption to evaluate the representativeness of the driving cycles. 

 

Until a few years ago (~10), the measurement of instant fuel consumption in vehicles required 

the use of flow sensors installed in the fuel lines, which makes the process of collecting a fair 

amount of fuel consumption data from a representative sample of vehicles cumbersome and 

costly. This fact hampered the use of fuel consumption and emissions as assessment criteria.  

As an alternative, reference [50] used a fuel consumption estimation function based on CPs 

to compute the specific fuel consumption (SFC) of the sampled trips. Then, the trip with the 

closest SFC to the average SFC of the sampled trips was selected as the driving cycle. Later 

on, reference [54] collected experimental fuel consumption and tail emission data from a 

fleet of vehicles and proposed the fuel-based  method to construct driving cycles. In the fuel-

based method, the representative driving cycle is the trip with the measured fuel consumption 

closest to the average fuel consumption of all the sampled trips. Then, they compared the 

driving cycles obtained by three different approaches: fuel-based, MT, and the Markov Chain 

Monte Carlo method, and found that the fuel-based method exhibited the best performance 

producing driving cycles that describe the region driving patterns and reproduce energy 

consumption and emission of pollutants [60]. However, they could not control the duration 

of the driving cycles because it is determined by the duration of the trip selected as the driving 

cycle.  Therefore, the resulting driving cycle could be too long for being used on a chassis 

dynamometer, or too short to grasp a symbolic value for fuel consumption of the vehicle out 

of the many uncertainties occurring in the test.  On the MT method, the duration of the driving 

cycle is an input parameter.  

 

As an alternative, this work explores the feasibility of using fuel consumption and emission 

of tailpipe pollutants as assessment criteria of a traditional MT method. We named this new 

method as the Energy Based Micro-Trip (EBMT) method. We will show that the EBMT 

method produces driving cycles that genuinely represent the local driving patterns and 
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reproduce the real energy consumption and emissions from the vehicles in the region of 

interest. We also propose to add a final step in the MT method to improve its performance, 

which consists of repeating many times (>1000) the traditional MT method, and select as the 

representative driving cycle, the one with the minimum average relative difference of all CPs. 

This step makes the MT method repeatable and reproducible. 

 

4.2 Materials and methods 

To compare the representativeness of driving cycles obtained by the EBMT method with 

respect to those constructed by the traditional MT method, the authors followed the 

methodology illustrated in Figure 4.1, which consist of the following steps: i) Select regions 

and routes of general characteristics, ii) Instrument of a large sample of vehicles. iii) Carry 

on a monitoring campaign to record the vehicle´s position, speed, fuel consumption, and 

tailpipe emissions, during a long time of regular operation.  iv) Use the obtained database to 

construct driving cycles following the EBMT and MT methods. v) Assess the degree of 

representativeness of the driving cycles obtained by each method. These steps are described 

in detail below. 

 

 
 

Figure 4.1 Proposed methodology to evaluate the representativeness of the driving cycles 

constructed following the EBMT method. 
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 Route selection 

Aiming to test the performance of the EBMT method, we selected two urban regions: Urban 

1 (Mexico City) and Urban 2 (Toluca). The selected regions are flat and have roads with 

different levels of service (LoS).  The LoS of a road is defined by the [49] as a qualitative 

measure that describes the operational conditions within a traffic stream, based on service 

measures such as speed and travel time, freedom to maneuver, traffic interruptions, comfort, 

and convenience.  The route selected in the Urban 1 region corresponds to the 11.5 km of the 

TOL-MEX route inside Mexico City, which is completely urban. The route in the Urban 2 

region corresponds to the 18.8 km of the TOL-MEX route located in the urban and suburban 

areas of Toluca city. Table 4.2 shows the characteristics of the routes selected. 

 

 

Table 4.2 Characteristics of routes considered in this work. 

Parameter Unit Urban 1 Urban 2 

Location - Mexico City Toluca City 

Facility - Local roadway Arterial 

Level of traffic - High Medium 

LoS - F E 

Speed limit km/h 60 60 

Number of lanes - 3 3 

Length km 11.5 18.8 

Ave road grade % 1.4 1.8 

Max road grade % 5.2 9.0 

Min altitude m.a.s.l. 2255 2611 

Max altitude m.a.s.l. 2258 2637 

 

 Vehicle fleet and instrumentation 

The company that cooperated in this study operates around 7000 buses around the country, 

10% of that fleet operates in the Mexico City region. 25 buses cover the routes described 

previously. We monitored 15 of these buses. They have the same powertrain and emission 

control technology and have gone through a similar maintenance program. Table 4.3 shows 

the technical characteristics of the vehicles.  The frontal area, drag coefficient, and rolling 

resistance coefficient were calculated following the procedures outlined in [50]. 
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Table 4.3 Technical characteristics of the vehicles used in this study. 

Parameter Unit Value 

Long m 12.85 

Wide m 2.6 

Tall m 3.6 

Capacity passengers 49 

Fuel - diesel 

Gross vehicle weight kg 13850 

Engine - Cummins IMS 425 

Number of cylinders - 6 

Engine displacement L 10.8 

Power HP 425 

Torque Nm 2102 

Bus maker - Busscar 

Model - Vissta Buss Elegance 

360 

Model year - 2012 - 2014 

Traveled kilometers km 100,000 – 200,000 

Control emission 

technology 

- EURO IV 

EGR - Yes 

DOC - No 

SCR - No 

Frontal area m2 8.47 

Drag coefficient - 0.64 

Rolling resistance 

coefficient 

- 0.006 

Applied load kg 2100 

 

 

The database consists of simultaneous measurements of position, speed, fuel consumption, 

and CO2, CO, and NOx (NO + NO2) tailpipe emissions, sampled at a rate of 1 Hz. Fuel 

consumption was read directly from the ECU (Engine Control Unit) via the OBD II (On-

Board Diagnostics System, version II) port.  The ECU controls the instantaneous engine fuel 

consumption by controlling the fuel injection time. The aggregate value of the fuel 

consumption measurements had a correlation level (R2) greater than 0.9 when compared 

against the measurements obtained with a gravimetric tank. 

  

This study used a SEMTECH ECOSTAR PEMS (Portable Emission Measurement System) 

with a SEMTECH-FEM module to measure the CO and CO2 concentration using a non-

dispersive infrared gas analyzer with a resolution of 10 ppm and a range of 0-8% for CO and 

a resolution of 0.01% and range of 0-20% for CO2. It also included a SEMTECH-NOx 

module to measure NO and NO2 using a non-dispersive ultraviolet gas analyzer with a range 

of 0-3000 ppm and 0-500 ppm, respectively, and a resolution of 0.3 ppm for both gases. 

Table 4.4 summarizes the equipment characteristics. We followed recommendations from 

the U.S. Environmental Protection Agency (EPA) for the measurement of vehicle emissions 

concentration [56]. Additionally, the PEMS was calibrated before and after each trip 

following the manufacturer recommendations. The study also used a high precision GPS 
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(Global Positioning System) to measure the position (latitude, longitude, and altitude), and 

the speed of the vehicles with the required sample rate.  

 

Table 4.4 Technical characteristics of the instruments used in this study 

Variable 
Instrument/ 

Trademark 
Technical characteristics 

Position: 

latitude, 

longitude and 

altitude 

Speed and time 

GPS/Garmin 

16x 

 

Position: 3-5 m, 95% typical 

Frequency: 1 Hz 

Speed: 0.05 m/s RMS steady state 

PPS time: 1 microsecond at rising edge of PPS pulse 

Instantaneous 

fuel 

consumption 

- 
Estimated through the injection time  

Reported by ECU through OBD II 

  Technique Range Resolution 

CO2 

PEMS 

SEMTECH 

ECOSTAR 

Non-Dispersive Infrared 0 - 20% v/v 0.01% v/v 

CO Non-Dispersive Infrared 0 - 8% v/v 10 ppm v/v 

NO 
Non-Dispersive 

Ultraviolet  
0 - 3000 ppm v/v 0.3 ppm v/v 

NO2 
Non-Dispersive 

Ultraviolet  
0 - 500 ppm v/v 0.3 ppm v/v 

Flow 

Measurement 
Exhaust Flow Meter - 0.1 kg/hour 

GPS: global position system; OBD II: on-board diagnostic system, second generation; ECU: engine control 

unit.  

 

 Monitoring campaign 

A monitoring campaign was developed during eight months in different seasons of the year 

to include the effects of the environmental conditions. The vehicle fleet operated in the 

selected routes, in both directions, under real-world driving conditions, and under normal 

conditions of use. Buses were driven by the company’s regular drivers, during week and 

weekend days, at different hours of the day, to obtain representative driving data.  

For the measurement of tailpipe emissions, the vehicles were loaded with 2,100 kg of water 

tanks to simulate the weight and inertia of the passengers. Emissions data were collected over 

two months following the same routes and under similar conditions.  

 

The data quality was verified in three phases: i) In the first phase, trips with less than 90% of 

data availability were disregarded. Frequently GPS data is lost when the vehicle cross under 

a bridge or moves along a tunnel, and PEMS data is lost when the device self-calibrates in 

the middle of a trip.   ii) The second phase identified outlier data for each trip.  They were 

data with values outside ranges physically possible. For example, negative values for vehicle 

speed, or values of oxygen concentration higher than 21%. They are also data with values 

outside typical values like vehicle acceleration with values greater than 3 m/s2. iii) The last 

phase consisted of synchronizing the data from the vehicle’s ECU with the emissions data 

reported by the PEMS. The non-synchronization of data is originated by the differences in 

the instruments’ response time. Data synchronization was done manually by dephasing each 

data set until we obtained the maximum correlation coefficient between variables that, 
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according to physics, should be correlated, such as fuel consumption, engine speed (RPM), 

and emissions. We found that data was unsynchronized by 7 to 11 s depending on the trip. 

 

Using the monitoring campaign outcomes, after data quality analysis, the authors built a 

database made of 12 monitored trips for each region with simultaneous measurements of 

mass emission of pollutants, fuel consumption, position, altitude, and speed. We also 

included 46 additional trips with the same information but without emissions. 

 

 Driving cycle construction method and assessment criteria 

From that database, we obtained the driving pattern of each region and reported them as the 

average values for the 19 CPs listed in Table 4.5. We also obtained the average values for 

fuel consumption and emission indexes, which are also reported in Table 5.  The emission 

indexes are the average mass of CO, CO2 or NOx emitted by the vehicle per kilometer 

traveled (g / km). 

 

Aiming to establish a baseline of comparison for the performance of the EBMT method, we 

implemented the traditional MT method. It constructs driving cycles by splicing together a 

series of micro-trips [3], which are segments of trips that start and end with a vehicle speed 

of zero [1], [45]. Using the trips database described above, we divided the sampled trips into 

micro-segments and elaborated a secondary database of micro-trips for each region.  

 

Then, the micro-trips were clustered based on their average speed and average positive 

acceleration. This clustering process was implemented in the statistical software Minitab, 

using centroids as the linkage method, Euclidean distances, and a 95% level of similarity. 

Then, we calculated the probability speed-acceleration probability distribution for each 

cluster in the Urban 1 and Urban 2 regions.  

 

Then, we selected micro-trips and spliced them together until they assemble a candidate 

driving cycle with a duration greater than 20 min. The selection of the micro-trips was made 

under a quasi-random process, which means that it was affected by the computed cluster 

speed-acceleration probability distribution. Within each cluster, each micro-trip has the same 

probability of being selected. We chose this time duration because it is nearly the time 

duration of the existing type approval driving cycles. We observed that the resulting 

candidate driving cycles exhibited a time duration between 20 and 22 minutes.  

 

The criteria for acceptance of the candidate driving cycle as the representative driving cycle 

is based on the degree of similarity between the candidate driving cycle and the driving 

patterns. This degree of representativeness is measured by the relative difference (RDi) 

between the CPi* of the candidate driving cycle and the CPi that describe the driving pattern 

(Equation 4.1). Values smaller than 5% are typically used as an acceptable threshold. 

Otherwise, the method restarts and selects a new group of micro-trips.  
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𝑅𝐷𝑖 = |
𝐶𝑃𝑖

∗ − 𝐶𝑃𝑖

𝐶𝑃𝑖
|  (4.1) 

 

As stated before, there is not an agreement on the CPs that should be used during this 

assessment of representativeness. According to Table 4.1, the CPs most used are the average 

speed and the percentage of idling time.  For the purpose of establishing a baseline of 

comparison, we adopted them, and we refer to these CPs as assessment criteria. In Equation 

4.1, i represent any of the assessment criteria.  Some authors have used additional CPs during 

this step. However, increasing the number of CPs reduces the possibility of identifying a 

candidate driving cycle.  

 

 Assessment of representativeness of the driving cycles obtained by each method 

In this work, we propose to use fuel consumption as the assessment criteria in the MT 

method. To evaluate this alternative and other attractive combinations, we tested the 

following cases of assessment criteria:  i) average speed and percentage of idling time 

(traditional MT method), ii) Specific fuel consumption (SCF), iii) SFC, average speed and 

percentage of idling time, iv) SFC, average speed, percentage of idling time, and emission 

indexes.   

 

Aiming to quantify the degree of representativeness of the driving pattern contained in the 

driving cycles constructed by the MT method using any of the four sets of assessment criteria 

described above, we observed the resulting relative differences of all possible CPs (Table 

4.5).  However, the MT method is reproducible but not repeatable due to its stochastic nature. 

Therefore, the resulting representative driving cycle changes each time the method is applied 

despite using the same trips data set as input data. This variation in the resulting driving 

cycles generates differences in the CPs values obtained, hampering the fair comparison in 

the degree of representativeness of the driving cycles constructed using the four sets of 

assessment criteria. As an alternative, we applied the MT method multiple times and 

determined the trend and dispersion of each RDi. The trend of the RDi was described through 

the average relative differences (ARDi), which is calculated by Equation 4.2. The dispersion 

of each RDi was quantified through its interquartile range (IQRi).  

 

 

 

𝐴𝑅𝐷𝑖 =
∑ |𝐶𝑃𝑖,𝑗

∗ − 𝐶𝑃𝑖|
𝑛
𝑗=1

𝑛 𝐶𝑃𝑖
     (4.2) 

 

 

In Equation 4.2, 𝑛 is the total number of iterations performed (1000), j is the iteration number. 

Both the ARDi and the IQRi can vary between 0 and infinity. ARDi and IQRi values close to 

zero indicate high similarity between the constructed driving cycle and the driving pattern.  

Finally, the total average value of the ARDi (𝐴𝑅𝐷̅̅ ̅̅ ̅̅ ) was calculated (Equation 4.3) and used to 

compare the four cases of assessment criteria.  Similarly, it was done for the IQRi (𝐼𝑄𝑅̅̅ ̅̅ ̅, 



 

 

70 

Equation 4.4). In equations 4.3 and 4.4, the subscripts i refers to any of the CPs in Table 4.5, 

and therefore w=19.   

 

 

𝐴𝑅𝐷̅̅ ̅̅ ̅̅ =
∑ 𝐴𝑅𝐷𝑖

𝑤
𝑖=1

𝑤
 (4.3) 

 

 

𝐼𝑄𝑅̅̅ ̅̅ ̅ =
∑ 𝐼𝑄𝑅𝑖

𝑤
𝑖=1

𝑤
   (4.4) 

 

 

 

Table 4.5 Characteristic parameters (CPs) used in this study to describe driving patterns and 

driving cycles 

 

Type  Name Symbol 

Speed 1 Average speed Ave Speed 

2 Maximum speed Max Speed 

3 Standard deviation of speed SD speed 

Acceleration 4 Maximum acceleration Max a+ 

5 Maximum deceleration Max a-  

6 Average acceleration Ave a+  

7 Average deceleration Ave a- 

8 Standard deviation of 

acceleration 

SD a+ 

9 Standard deviation of 

deceleration 

SD a- 

Operational 

modes  

(% of time) 

10 Percentage of idling time % idling 

11 Percentage Acceleration % a+ 

12 Percentage Deceleration % a- 

13 Percentage Cruising % cruising 

Dynamics 14 No. of acceleration per 

kilometer 

Accel/km 

15 Root mean square of accel. RMS 

16 Positive kinetic energy PKE 

17 Speed acceleration probability 

distribution 

SAPD 

18 Vehicle Specific Power VSP 

19 Kinetic Intensity KI 

Emissions and 

energy 

20 Specific fuel consumption SFC 

21 Emission index of CO2 EI CO2 

22 Emission index of CO EI CO 

23 Emission index of NOx EI NOx 
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 Empirical results 

Table 4.6 presents the values of the CPs that describe the driving patterns in the Urban 1 and 

Urban 2 regions. They are alike, which was expected as they are similar cities in terms of 

topography, vehicle technologies used, road characteristics, and social culture. The main 

differences between these two driven patterns are mean speed (7.3 vs. 10.0 m/s) and VSP 

(4.8 vs 7.0. kW/t).   

 

Figures 4.2a-d are box and whisker plots that show the results of tendencies and dispersions 

obtained for the RDi. The red box in each figure highlights the assessment criteria used in 

each case. In intermediate steps, we obtained these plots and observed stable results after 500 

iterations (variations smaller than 1% between iterations). Figures 4.2a-d are the results 

obtained after 1000 iterations. CPs with ARDi < 5% are highlighted in green in Table 4.6.  

 

Aiming to quantify the effectiveness of the different sets of assessment criteria, the average 

of the ARDi and of the IQRi were calculated for the CPs (𝐴𝑅𝐷𝐶𝑃𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝐼𝑄𝑅𝐶𝑃𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅)  and emission 

indexes (𝐴𝑅𝐷𝐸𝐼𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑎𝑛𝑑 𝐼𝑄𝑅𝐸𝐼𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅ ), while the  ARD and IQR were calculated for the energy 

consumption (ARDSFC and IQRSFC). These results are shown in Table 4.7 for the Urban 1 and 

Urban 2 regions. 
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Table 4.6 Characteristic parameters that describe the driving patterns in Urban 1 and Urban 2 regions.  ARDi for each CP 

 

CPi 
Driving patterns for: 

ARDi 
Urban 1 Urban 2 

Urban 1 Urban 2 
Av. Speed, % 

idling 
SFC 

SFC, Av. Speed, 

% idling 

SFC, Av. Speed 

% idling, EIs 

Av. Speed, % 

idling 
SFC 

SFC, Av. Speed, 

% idling 

SFC, Av. Speed, 

% idling, EIs 

Speed 

Max speed 22.3 26.2 1.1 4.6 1.1 1.0 4.4 4.6 4.7 5.0 

Ave speed 7.3 10.0 2.5 16.8 2.6 2.5 2.5 11.3 2.5 2.5 

SD speed 6.9 7.7 13.5 13.2 11.2 11.9 3.8 4.2 3.8 3.9 

Acceleration 

Max a+ 1.3 1.3 39.7 33.6 29.4 29.3 16.5 17.2 16.9 17.7 

Max a- -2.1 -2.1 14.6 13.9 15.2 16.9 12.7 12.3 12.8 12.4 

Ave a+ 0.5 0.4 4.1 3.2 3.4 3.7 3.6 2.9 3.1 2.3 

Ave a- -0.5 -0.5 5.8 4.8 4.0 4.6 6.2 5.0 5.2 4.3 

SD a+ 0.2 0.2 7.4 6.0 5.0 5.3 3.2 2.8 2.9 2.8 

SD a- 0.4 0.4 7.7 7.1 6.6 7.7 6.1 5.4 5.0 4.4 

Operation 
modes (% of 

time) 

% idling 15.1 13.6 2.4 45.3 2.4 2.4 2.5 29.6 2.4 2.5 

% a+ 32.9 33.8 3.0 8.9 2.8 2.8 4.4 7.5 3.7 3.1 

% a- 29.3 29.1 3.0 8.6 2.3 2.2 3.4 7.0 3.2 2.8 

% cruising 22.7 25.9 6.0 10.3 4.2 4.0 8.9 9.7 7.4 6.1 

Dynamics 

Accel / km 8.6 6.1 10.9 17.2 9.1 8.4 8.5 14.4 8.4 7.3 

RMS 0.5 0.5 5.2 6.2 3.8 4.3 5.9 5.9 4.7 3.5 

PKE 0.4 0.3 10.0 5.3 6.6 7.3 7.3 4.9 5.2 4.1 

SAPD 0.0 0.0 12.2 16.4 11.9 11.9 11.3 13.9 10.7 10.0 

VSP 4.8 7.0 8.7 12.9 8.6 8.3 11.6 15.3 10.5 11.5 

KI 0.8 0.7 10.4 45.6 15.2 13.5 10.2 8.5 6.8 6.7 

Fuel 

consumption 

and 

emissions 

SFC  0.4 0.4 9.6 2.5 2.8 2.7 7.5 2.6 2.5 2.4 

EI CO2 839.0 749.2 9.5 4.8 4.7 1.8 5.5 4.0 3.3 1.7 

EI CO 37.2 39.4 10.1 8.1 6.3 2.4 10.5 5.9 5.4 2.4 

EI NOx 5.0 3.9 9.8 6.2 5.1 2.1 6.7 9.7 6.3 2.5 
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(a) 

 

(b) 

 

 

(c) 

 

 

(d) 

 
 

Figure 4.2 Box and whisker plots of the RDi after 1000 iterations obtained by the MT method 

using as assessment criteria a.) Average speed and % idling, b.) SFC, d.) SFC, Average speed 

and % idling, and d.) SFC, average speed, % idling and EI of CO2, CO and NOx for the case 

of Urban 1 region. 
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Table 4.7 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and 𝐼𝑄𝑅̅̅ ̅̅ ̅ obtained for the different sets of assessment criteria after replicating 

the EBMT method 1000 times. 

 

Regions Urban 1 Urban 2 

Set of 

assessment 

criteria 

𝐴𝑅𝐷̅̅ ̅̅ ̅̅  ARD 𝐼𝑄𝑅̅̅ ̅̅ ̅ IQR 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  ARD 𝐼𝑄𝑅̅̅ ̅̅ ̅ IQR 

CPs EIs SFC CPs EIs SFC CPs EIs SFC CPs EIs SFC 

a 8.85 9.81 9.64 5.96 9.81 8.53 7.01 7.58 7.50 6.52 7.95 7.26 

b 14.74 6.38 2.50 13.84 6.38 2.39 9.61 6.55 2.60 9.11 6.63 2.53 

c 7.66 5.36 2.79 5.38 6.14 2.76 6.31 5.04 2.54 5.67 5.09 2.43 

d 7.79 2.11 2.69 5.42 2.20 2.71 5.94 2.20 2.39 5.47 2.21 2.35 

a: Ave. Speed and % idling; b: SFC; c: SFC, Ave. Speed and % idling; d: SFC, Ave. Speed, 

% idling and EI of CO2, CO and NOx 

 

 

Table 4.6 and Figure 4.2.a show the tendency and dispersion of the RDi for the case of the 

traditional MT method, i.e., when the average speed and the percentage of idling time are used 

as the assessment criteria (Case a). By design, these CPs (mark with a red box in Figure 4.2.a) 

have RDi < 5%.  Table 4.6 and Figure 4.2.a show that only 6 and 8 out the 19 CPs have ARDi 

< 5% for the case of Urban 1 and 2 regions, respectively. Table 4.7 shows that  𝐴𝑅𝐷𝐶𝑃𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 8.85% 

and 7.01% for the case of Urban 1 and 2 regions, respectively. However, these RDi could be 

as high as 40% (Figure 4.2.a). The same situation occurs with the emission indexes that have 

𝐴𝑅𝐷𝐸𝐼𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅= 9.81% and 7.58%, for Urban 1 and 2, respectively, but their RDi could be as high as 

40%. Similarly occurs for the case of SFC (ARDSFC = 9.64% and 7.50% for urban 1 and 2, 

respectively). 

 

When the SFC is used as the only assessment criterion (Case b, Figure 4.2b), the driving cycles 

obtained reproduce fuel consumption (ARDSFC < 5%) and fairly well emissions (𝐴𝑅𝐷𝐸𝐼𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅= 

6.38% and 6.55% for urban 1 and 2). However, this alternative produces driving cycles that 

could have problems representing the driving patterns (𝐴𝑅𝐷𝐶𝑃𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 14.74% and 9.61% for Urban 

1 and 2, respectively). The kinetic intensity and idling time are de CPs with the most significant 

problems, especially in the Urban 1 region where the ARDi > 45% for these two CPs.  When 

SFC is used as the only assessment criterion, idling time is hard to reproduce because the 

energy consumption associated with idling is negligible compared to when the vehicle is 

moving. Thus, driving cycles with long or short idling time exhibit similar fuel consumption. 

Similarly happens with the kinetic intensity. Even though the vehicle kinetic energy is provided 

by the fuel, there are other modes of energy that could be more relevant in the operation of the 

vehicles. For the case of heavy-duty vehicles used for passenger transportation in large urban 

center, the frequent acceleration-breaking events have a great influence on fuel consumption.  

In these cases, KI has a low influence on fuel consumption. 

 

Then, we combined both cases to improve the representativeness of the driving cycles produced 

by the MT method using SFC as assessment criteria, and to improve fuel consumption and 

emissions reproducibility of the driving cycles produced by the traditional MT method. Table 

4.6 and Figure 4.2c show the tendency and dispersion of the RDi obtained when the SFC, 

average speed, and percentage of idling time are used as assessment criteria (case c). They 

show that in the Urban 1 and 2 regions, 9 out of the 19 CPs presented ARDi values lower than 
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5%, while 12 of the 19 CPs presented values of IQRi lower than 5%. They also show that all 

CPs exhibit ARDi smaller than 20%, except for the maximum positive acceleration in the urban 

1 region, which reached a value of 29%.  Furthermore, Table 4.7 shows that this case exhibit 

the lowest values for 𝐴𝑅𝐷𝐶𝑃𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (7.66% and 6.31% for urban 1 and 2, respectively), and 

acceptable values for emission indexes 𝐴𝑅𝐷𝐸𝐼𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ (5.36% and 5.04% for urban 1 and 2, 

respectively). These results indicate an appropriate performance of the EBMT method 

representing the local driving pattern and reproducing fuel consumption and emissions.  

 

We also explored the possibility of adding the emission indexes as assessment criteria (case d). 

Figure 4.2d and Table 4.6 shows that for this case (SFC, Average speed, percentage of idling 

time, and emission indexes of CO2, CO, and NOx as assessment criteria), the number of CPs 

with ARDi and IQRi, with values lower than 5%, remained the same for the case of Urban 1 

region and increased up to 11 CPs for the Urban 2 region. By design, it reduced the 𝐴𝑅𝐷𝐸𝐼𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ to 

values smaller than 5%, while the 𝐴𝑅𝐷𝐶𝑃𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  remained approximately constant at values close to 

7%.  However, the maximum positive acceleration kept being the only CP with ARDi above 

20% for the case of Urban 1 region. Even though this case produces the best performance of 

the MT method, it requires of measurements of the instant vehicle tailpipe emissions, which is 

an expensive process that involves the use of Portable Emissions Monitoring Systems (PEMS), 

making the testing process invasive, i.e., it interferes with the normal use of the vehicle given 

the large size of this type of instrumentation.  

 

Given the previous results, we recommend adopting the specific energy consumption, average 

speed, percentage of idling time, and average positive acceleration as the assessment criteria in 

the MT method to guarantee that the constructed driving cycles represent the local driving 

pattern and reproduce fuel consumption and emission of tailpipe emission of pollutants. We 

named this case as the EBMT method. 

 

Aiming to minimize the probability of selecting a driving cycle with high RDi, which is an 

inherent problem of the MT method, and to eliminate the lack of reproducibility of this method, 

we propose to add a final step in the construction of driving cycles. It consists of repeating at 

least 500 times the method and chose the driving cycle with the smallest ARDs as the best 

representative driving cycle.  This step makes the traditional MT and the EBMT methods 

reproducible.  

 

This work was conducted using data of a fleet of buses with similar technology. Therefore, it 

should be extended to different types of vehicle fleets operating in different regions to increase 

the generality of our conclusions.  Additionally, further work is required to identify the 

appropriate length or duration of the driving cycles.  The cost of implementing a driving cycle 

in a chassis dynamometer increases with its duration, while a minimum duration is required to 

ensure an appropriate signal to noise ratio of the resulting data of fuel consumption and 

emission of pollutants.  

 

 Summary and conclusions 

In this work, we proposed the Energy Based Micro-Trip (EBMT) method for obtaining driving 

cycles that truly represent local driving patterns, and simultaneously reproduce the energy 

consumption and tailpipe emissions observed during the normal operation of the vehicles, when 

a vehicle of similar technology follows the driving cycle in a chassis dynamometer. For the 
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case of fuel-powered vehicles, the EBMT method consists of the traditional Micro-trips 

method, where the assessment criteria are the specific fuel consumption (SFC), average speed, 

and percentage of idling time.  

 

To evaluate the performance of the EBMT method, we implemented it in two urban regions 

with similar traffic conditions. We used 1 Hz experimental data of speed, fuel consumption, 

and tailpipe emissions from a fleet of 15 transit buses that operate in these two regions. We 

established that a driving cycle represents a driving pattern when the CP*i that describe it are 

similar to the CPi that describe the driving pattern in that region (CP*i =CPi). Similarly, we 

established that a driving cycle reproduces the energy consumption and tailpipe emissions 

when its SFC* and emission indexes (EI*) are similar to the real SFC, and EI observed in the 

vehicles in their normal operation in the region of interest. We quantified the degree of 

representativeness of the driving pattern and reproducibility of energy consumption and 

emissions via their relative differences (RDi) and established a 5% as the threshold for 

acceptable performance.  As the MT method produces a different driving cycle every time the 

method is applied, we repeated the process of constructing the driving cycle 1000 times, 

calculated all RDi at each iteration, and reported their tendency as the average relative 

differences (ARDi) and their dispersion as the interquartile range (IQRi).  

 

We considered four cases of assessment criteria during the construction process: a.) Average 

speed and percentage of idling time (traditional MT method); b.) SFC; c.) Average speed and 

percentage of idling time, and specific energy consumption (EBMT method); d.) Average 

speed and percentage of idling time, SFC, and emission indexes of CO, CO2, and NOx. Best 

results were produced by the EBMT method (case c). Driving cycles constructed by this 

method represents the driving patterns with average relative differences 𝐴𝑅𝐷̅̅ ̅̅ ̅̅
𝐶𝑃𝑠 < 7.66% and 

reproduce energy consumptions with 𝐴𝑅𝐷𝑆𝐹𝐶 < 2.69% and tailpipe emissions with 𝐴𝑅𝐷̅̅ ̅̅ ̅̅
𝐸𝐼𝑠 < 

5.36%. After 1000 iterations, the ARDi for all CPs were below 20%, except for the case of the 

maximum positive acceleration that reached an ARDi value of 29% in the Urban 1 region. These 

results mean that the EBMT constructs driving cycles that represent the driving patterns and 

reproduces the energy and environmental performance of vehicles. 

 

Based on the learnings of this work, we propose to add a final step in the construction methods 

of driving cycles. It consists of repeating at least 500 times the method and chose the driving 

cycle with the smallest ARDs as the best representative driving cycle.  This step makes the 

traditional MT method and the EBMT reproducible. The lack of reproducibility of the resulting 

driving cycle has been the major drawback of the methods based on the MT method. Additional 

work is required to consider regions with relevant variations in altitude.  
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5 Main characteristic parameters to describe driving patterns 

Abstract: Currently, there is an increasing interest in obtaining driving cycles that truly 

represent the local driving pattern and reproduce the real energy consumption from electric and 

engine-powered vehicles use when they are tested on a chassis dynamometer. Both driving 

patterns and driving cycles are described by a set of characteristic parameters (CP) such as 

average speed and mean positive acceleration. However, it is unknown which set of CPs to use 

for these purposes. Aiming to address this issue, we considered two urban regions and sampled 

their driving pattern by monitoring second by second the regular operation of 15 vehicles for 

eight months. Then, we hypothesized that 2 or 3 CPs are enough to fully describe driving 

patterns. Toward that end, we constructed DCs via the Micro-trips method using combinations 

of 2 or 3 CPs as assessment parameters. We considered 19 CPs widely used, tested 1140 

combinations of those CPs, and repeated the process 1000 times for each combination. Finally, 

we used the methodology proposed by Huertas et al. to evaluate the degree of 

representativeness of each resulting DCs. We observed the tendency and dispersion of the 

results. We concluded that, for our cases of study, the average speed, the percentage of idling 

time, and the standard deviation of the acceleration, are the CPs that properly describe driving 

patterns, and must be included in the MT method to construct DC that reproduce energy 

consumption and tailpipe emissions.  

Keywords:  Driving cycles, Micro-trips method, fuel consumption, tailpipe emissions 

 

 

Frequent symbols and acronyms 

 

Symbol Description Unit 

EIi Emission Index for pollutant i g/km 

PKE Positive Kinetic Energy per distance traveled m/s2 

SFC Specific Fuel Consumption L/km 

R2 Coefficient of determination - 

CP Characteristic Parameter - 

DC Driving cycle  

GPS Global Positioning System  

masl Meters above sea level  

MT Micro-trip  

OBD On-Board Diagnostics System  
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5.1 Introduction 

Currently, there is an increasing interest in establishing the proper way of describing local 

driving patterns, especially for the design of energy management strategies that minimize the 

energy use in electric vehicles. Designers use driving patterns for the optimization of electric 

power trains with smaller electric motors, the design of strategies to maximize vehicle 

autonomy, and for the design of alternatives of smart mobility. 

 

A driving pattern is related to the human aspects involved in the use of vehicles, representing 

the way people drive in a specific city or region. Currently, driving patterns are described 

through characteristic parameters (CPs), which are variables resulting from any combination 

of speed and time, such as average speed and average positive acceleration. Thus, it is typical 

to describe how people drive in a specific city specifying the average speed and the average 

acceleration. However, there are still discrepancies on which set of CPs describes the driving 

patterns accurately.  

 

Driving patterns are also described by driving cycles (DCs). They are speed-time series that 

can also be described by their characteristic parameters (CPi*). Then a DC represents a driving 

pattern when its CPi* are close to the values of the corresponding CPi of the driving pattern 

(CP*i  CPi). Existing DCs are used by carmakers to evaluate the energy consumption and 

emissions of their vehicles, as part of the regulatory process established to introduce a new 

vehicle technology in a market [2], [44], [48]. However, the DCs currently used by carmakers 

do not represent any local driving pattern. The accurate description of driving patterns through 

DCs is a pre-requisite to assess the real energy and environmental performance of the vehicles 

in a given region.  Errors in the description of driving patterns have led to significant 

differences between the fuel consumption reported by manufacturers and the one observed 

throughout the course of the regular use of the vehicles.  Recent studies have shown that both 

fuel consumption and emissions in the real world are between 8% and 60% larger than those 

reported by manufacturers [15], [60], [66] . 

 

The DC representativeness depends mainly on four factors: (i) the quality and quantity of 

vehicle operation data, (ii) the DC construction method, and (iii) the parameters used to 

evaluate the DC representativeness, and (iv) the duration of the DC [33]. The use of state of 

the art in Information Technologies (IT) and Global Information Systems (GIS) addresses the 

first factor. Today, they allow monitoring hundreds of vehicles simultaneously at high 

frequency (~1 Hz).  

 

Regarding the second factor, there are two approaches: stochastic and deterministic methods. 

The Micro-trips (MT) and the Markov chains - Monte Carlo methods are two conventional 

stochastic approaches.  These methods construct DCs by splicing together trip segments [3] or 

states [12], [46], which are quasi-randomly selected from the collected trip database [45]. On 

the other hand, in the deterministic approach, one trip out of a set of monitored trips is selected 

to be the DC. The MT method is by far the researchers´ preferable method (Table 1).  The 

Micro-trip method main drawback is that it produces different results every time the method is 

replicated (with the same input data). In this work we propose to solve this issue by replicating 

the method a large number of times (~1000 times) and looking at the tendency and dispersion 

of the results.  
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Table 5.1 Construction methods and CPs used as assessment parameters in some DCs  

MT: Micro-trips, MCMC: Markov Chain-Monte Carlo, TB: Travel based, KT: Knight Tour 

Ave l: Mean length of micro-trips; N: Average number of stops; RCA:  Rate of change of acceleration; SAPD: Speed acceleration probability 

distribution
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CPs used as assessment parameters 

Method Reference 
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FTP 72, FTP75                     TB [61] 

LA92, Unified Cycle                     MT [45] 

LA01                     MCMC [45] 

HHDDT Cycle                     MT [2] 

Arterial Cycles                     MCMC [2] 

Edinburgh Cycle                     MT [2] 

IEC                     TB [24] 

ARTEMIS Cycle                     MT [32] 

TRL Cycle                     MT [2] 

Sydney Cycle                     MT [24] 

Melbourne Peak Cycle                     MT [24] 

CUEDC Cycles                     MT [2] 

Perth Cycle                     KT [24] 

TMDC                     TB [55] 

KHM                     MT [2] 

China Cycles                     MT [22] 

Beijing Cycles                     MT [2] 

HK and Zhulai Cycles                     MT [2] 

Pune Cycle                     MT [23] 

Metro Manila Cycle                     MCMC [2] 

BDC Cycle                     MT [40] 

WLTC                     MT [17] 

WMTC                     MT [19] 
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All these methods evaluate how close the resulting DC represents the driving pattern using as 

criteria a set of CPs (third factor). Table 1 shows the CPs used in some of the DCs developed 

around the world. It shows that average vehicle speed and percentage of idling time are the CPs 

most frequently used. Recently, the specific fuel consumption started to be used as assessment 

criteria due to the possibility of monitoring fuel rate consumption through the vehicle engine 

control unit. 

 

Even though the correct description of driving patterns is a pre-requisite to evaluate the energy 

and environmental performance of the vehicles, Table 5.1 shows that there is not a unique set 

of CPs used to assess the DC representativeness. Furthermore, work is required to develop a 

methodology to evaluate if an arbitrary combination of speed-time can be accepted as a CP. 

Work is also required to establish which variables need to be included as assessment criteria in 

the construction of DC, regardless if they are CPs.  

 

To address these issues, this study focuses on the identification of the set of CPs that should be 

used as assessment parameters in the construction of DCs that reproduce the real vehicle energy 

consumption and tailpipe emissions. The resulting CPs are the ones that best describe the 

driving patterns in a giving region. In this work we defined metrics to verify and quantify the 

fulfillment of these 3 requirements. We tested our contributions to new knowledge in a 

megacity (Mexico City) and a large urban center (Toluca City), using a large data base of 

simultaneous 1 Hz measurements of speed, fuel consumption and tailpipe emissions, taken 

from monitoring a large sample of vehicles of the same technology during a long period of 

time, under normal working conditions. 

 

5.2 Materials and methods 

A DC represents a driving pattern when CP*i  CPi for all CPs, and when the fuel consumption 

and tailpipe emissions of the vehicles that follow that DC on a chassis dynamometer are similar 

to the observed from vehicles of the same technology under normal driving conditions.  

 

Aiming to identify the set of CPs that, when used as assessment parameter, produces DCs that 

best represent the local driving pattern: 

 

• We obtained the driving patterns of two different urban regions by monitoring second 

by second the speed of a fleet of busses during eight months of normal operation. We 

also monitored their fuel consumption and tailpipe emissions for two months. We 

constructed a common database of trips, vehicle speed, fuel consumption, and tailpipe 

emissions.  In this work, we used the database reported by [57], [67]. However, we will 

describe briefly the process of constructing that database.  

 

• Using the same database, we tested the level of representatives of the DCs obtained 

using different combinations of CPs as assessment criteria via the MT method. We 

hypothesized that 2 or 3 CPs are enough to achieve this objective. 

 

• We identified the combination of CPs that, when used as assessment criteria, 

systematically produces DCs that best represent the driving pattern in both regions. 

 

Next, we will describe each of these steps.  
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 Selected regions 

For this study, we selected two urban regions with different driving conditions. Table 5.2 

describes the characteristics of the two studied regions. The first region (Urban 1) corresponds 

to a flat densely populated region inside Mexico City (2255 meters above the sea level – 

m.a.s.l.). In this region, we arbitrarily selected a set of roads covering 11.5 km, which are 

characterized by highly congested traffic (i.e., LoS E or F). The second region (Urban 2) 

corresponds to a flat region located on the outskirts of Toluca City (2611 m.a.s.l.). In this 

region, we selected 18.8 km of roads with medium traffic flow (i.e., LoS D). 

 

Table 5.2 Description of the regions considered in this study. 

 

Parameter Units Urban 1 Urban 2 

Location - Mexico City Toluca 

Topography - Flat Flat 

Level of traffic - High Medium 

Road LoS* - E-F D 

Speed limit km/h 60 60 

Number of lanes - 3 3 

Length km 11.5 18.8 

Ave road grade % 1.4 1.8 

Max road grade % 5.2 9.0 

Min altitude masl 2255 2611 

Max altitude masl 2258 2637 

* LoS is the level of quality of a traffic facility. It represents a range of operating conditions, 

generally in terms of service measures such as speed and travel time, freedom to maneuver, 

traffic interruptions, and comfort and convenience. The classification was done according to 

the US Highway capacity manual [49]. 
 

 Vehicle fleet 

Fifteen buses were monitored. They had the same engine technology, similar maintenance 

conditions, were operated in the same routes, and driven by their regular drivers. The buses 

were built between 2012 and 2014. With 49-passenger capacity and a curb vehicle weight of 

14,435 kg, the buses operate with a diesel engine Cummins ISM 425 with emission control 

EURO IV, power of 425 HP, and torque of 2,102 Nm. The overall dimensions of the buses are 

12.85 m, 3.6 m, and 2.6 m long, wide, and high, respectively. The vehicles were loaded with a 

weight of 2,100 kg of water tanks to simulate the average passengers' load. 
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 Instrumentation 

The vehicle location (Latitude, Longitude and Elevation) and speed were measured by using a 

global position system (GPS) Garmin 16x. The sampling frequency was 1 Hz. The On-Board 

Diagnostics (OBD) system was used to acquire fuel consumption through the Engine Control 

Unit (ECU). Using the electronic fuel injection system of the bus, we determined the 

instantaneous fuel consumption by reading the opening time of the injector. The collected OBD 

data were validated using an external graduated tank, which is the standard gravimetric 

procedure to determine the fuel consumption of vehicles [51], [52]. Based on the correlation 

coefficient (R2> 0.9) obtained in a correlation analysis between the results obtained by these 

two methods, we concluded that the OBD method produces reliable data [57].  

 

Polluting emissions were monitored with a Portable Emission Measurement System (PEMS), 

SEMTECH ECOSTAR model from Sensors Inc. with the modules for measuring CO, CO2, 

NO, and NO2. With the SEMTECH-FEM module, CO and CO2 emissions were measured using 

a non-dispersive infrared analyzer, and the SEMTECH-NOx module for NO and NO2 

emissions using a non-dispersive ultraviolet gas analyzer. Both concentration measurement 

systems are recommended by the US Environmental Protection Agency (USEPA) for these 

purposes. At the beginning and at the end of each measurement, the recommended calibration 

procedure by the manufacturer was carried out using NIST traceable calibration gas tanks. The 

technical characteristics of the equipment used are presented in Table 5.3.  

 

Table 5.3 Technical characteristics of the instruments used in this study. 

Variable 
Instrument/ 

Trademark 
Technical characteristics 

Speed, time and 

position (latitude, 

longitude and 

elevation) 

GPS / 

Garmin 

16x 

 

Position: 3-5 m, 95% typical 

Frequency: 1 Hz 

Speed: 0.05 m/s root mean square steady state 

Pulse per second (time): 1 microsecond at rising edge of pulse 

Instantaneous 

fuel consumption 
- 

Estimated through the injection time 

Reported by ECU through OBD 

  Technique Range Resolution 

CO2 

PEMS 

SEMTECH 

ECOSTAR 

Non-Dispersive Infrared 0 - 20% v/v 0.01 % v/v 

CO Non-Dispersive Infrared 0 - 8% v/v 10 ppm v/v 

NO 
Non-Dispersive 

Ultraviolet 
0 - 3000 ppm v/v 0.3 ppm v/v 

NO2 
Non-Dispersive 

Ultraviolet 
0 - 500 ppm v/v 0.3 ppm v/v 

Flow 

Measurement 
Exhaust Flow Meter - 0.1 kg/h 

 

 

 Monitoring campaign and data quality analysis 

Simultaneous measurements of the variables listed in Table 5.3 were made in the two regions 

described in Table 5.2. The vehicles described in section 5.2.2 were operated by their usual 

drivers, at different times of the day and different days of the week, during eight months in 

different seasons of the year. Data quality analysis was carried out to identify atypical data. 

Data with values outside physically possible values, like O2 concentrations higher than 21%, 

were disregarded. Trips with less than 95% of data availability were disregarded. Then a data 
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synchronization process was carried out to couple speed, fuel consumption, and emissions 

using correlation analysis of variables that should be correlated, like CO2 emissions and fuel 

consumption. After data quality analysis, we kept 46 trips in each region with simultaneous 

measurements of speed, fuel consumption, and emissions.  

 

 Method to identify the set of CPs that best describes driving patterns 

The driving patterns of the Urban 1 and 2 regions were described by means of the 19 CPi  listed 

in Table 5.4. The values of those CPi were calculated from the speed-time data of the 46 

monitored trips.  

 

Afterwards, we selected a well-accepted method to construct DCs. As described in the 

introduction section, the MT method is by far the most frequently used method for this purpose. 

However, there are many variations of this method. We selected the basic or traditional version 

which we describe next.  

 

Using the trips database described above, we divided the sampled trips into micro-segments 

and elaborated a secondary database of micro-trips for each region. Then, the micro-trips were 

clustered based on their average speed and average positive acceleration. This clustering 

process was implemented in a commercial statistical software, using centroids as the linkage 

method, Euclidean distances, and a 95% level of similarity. Then, we selected micro-trips and 

spliced them together until they assemble a candidate driving cycle with a duration greater than 

20 min. We chose this time duration because it is nearly the time duration of the existing type 

approval driving cycles. We observed that the resulting candidate driving cycles exhibited a 

time duration between 20 and 22 minutes. The selection of the micro-trips was made under a 

quasi-random process, which means that it was affected by the computed cluster speed-

acceleration probability distribution. Within each cluster, each micro-trip has the same 

probability of being selected.  

 

The criteria for acceptance of the candidate driving cycle as the representative driving cycle is 

based on the degree of similarity between the candidate driving cycle and the corresponding 

driving pattern. This method uses a set of 2 or 3 CPs for this purpose and we will refer to them 

as assessment parameters. The degree of representativeness is measured by the relative 

difference (RDi) between the CPi* of the candidate driving cycle y and the CPi that describe 

the driving pattern (Equation 5.1). In Equation 5.1, i represent any of CPs used as the 

assessment criteria. Values smaller than 5% are typically used as an acceptable threshold. 

Otherwise, the method restarts and selects a new group of micro-trips. The selection of the 

threshold value depends on the researcher´s criterion or even on the empirical results. Previous 

studies have used values between 5% and 15% [24], [29]. 

 

 

𝑅𝐷𝑖 =
∑|𝐶𝑃𝑖

∗ − 𝐶𝑃𝑖|

𝐶𝑃𝑖
   (5.1) 

 

 

The selection of those CPs used as assessment parameters determines the representativeness of 

the DCs and the reproducibility of the fuel consumption and tailpipe emissions. As stated 

before, there is not an agreement on the CPs that should be used during this assessment of 

representativeness. Some authors have increased the numbers of assessment parameters during 
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this step. Few authors have attempted to use all CPs as assessment parameters. However, 

increasing the number of CPs reduces the possibility of identifying a candidate driving cycle, 

make the MT method computationally expensive and in some instances, it could make the MT 

method to diverge since two CPs may possibly lead to contradictory results.  

 

Aiming to identify the set of 2 or 3 CPs that must be used as assessment parameters we propose 

to use as assessment parameters all possible combinations of 2 or 3 CPs out of the 19 CPs listed 

in Table 5.4, and then select the combination that produces the most representative DCs. The 

resulting combination will be the set of CPs that must be used in the MT method and the ones 

that fully describe driving patterns. Following this alternative, we tested 171 combinations of 

2 CPs and 969 combinations of 3 CPs.  

 

Then, aiming to evaluate how close the resulting DCs represent the driving pattern, we 

extended the applicability of Equation 5.1 and observed the relative differences of the CPs not 

included as assessment parameters and expected that they were under a less strict but sill 

acceptable threshold (~20%). Equation 5.1 was also used to establish the relative difference for 

the specific fuel consumption (SFC) and the CO2, CO, and NOx emission indexes. 

 

However, the stochastic nature of the MT method makes that each time the method is applied, 

the resulting DC changes generating variations in the RDi. To overcome this situation, for each 

combination of CPs, we observed the tendency and dispersion of each RDi after repeating the 

DC construction method many times (N=1000).  We used the average relative difference 

(ARDi, Equation 5.2) as a metric of tendency and the inter-quartile range (IQRi) as a measure 

of dispersion for each RDi.  

 

𝐴𝑅𝐷𝑖 =
∑ 𝑅𝐷𝑖

𝑁
1

𝑁
   (5.2) 

 

 

Then, for each combination of CPs, we averaged the 19 values for the ARDi and IQRi and 

reported them as the 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and the 𝐼𝑄𝑅̅̅ ̅̅ ̅, respectively.  Finally, we selected the set of CPs that 

when used as assessment parameters produced DCs with the lowest values of 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and 𝐼𝑄𝑅̅̅ ̅̅ ̅ 

i.e., the set of CPs that with the highest probability produces DCs with the best representation 

of the driving pattern of the two regions under study. Therefore, they, by themselves, are the 

CPs that best describe the driving patterns in those regions.  

  



 

 
86 

Table 5.4 Characteristic parameters used to describe driving patterns. 

Type of 

parameter 

Characteristic Parameters (CPs) Region 

Units 
Name Symbol Urban 1 Urban 2 

Speed 

Maximum speed Max s 22.3 26.2 m/s 

Average speed Ave s 7.3 10.0 m/s 

Standard deviation of speed SD s 6.9 7.7 m/s 

Acceleration 

Maximum acceleration Max a+ 1.3 1.3 m/s2 

Maximum deceleration Max a- -2.1 -2.1 m/s2 

Average acceleration Ave a+ 0.5 0.4 m/s2 

Average deceleration Ave a- -0.5 -0.5 m/s2 

Standard deviation of 

acceleration 
SD a+ 0.2 0.2 

m/s2 

Standard deviation of 

deceleration 
SD a- 0.4 0.4 

m/s2 

Operational 

modes  

(% of time) 

  

Idling % idl 15.1 13.6 % 

Acceleration % a+ 32.9 33.8 % 

Deceleration % a- 29.3 29.1 % 

Cruising % cru 22.7 25.9 % 

Dynamics 

Number of accelerations per 

km  
Accel/km 8.6 6.1 

km-1 

Root mean square of 

acceleration 
RMS a 0.5 0.5 

m2/s2 

Positive kinetic energy PKE 0.4 0.3 m/s2 

Speed-acceleration 

probability distribution   
SAPD N/A N/A 

- 

Vehicle specific power VSP 4.8 7.0 
kW/to

n 

Kinetic intensity KI 0.8 0.7 1/m 

Other parameters  

Fuel 

consumption and 

emissions 

Specific fuel consumption SFC 0.4 0.4 l/km 

Emission index of CO2 EI CO2 839.0 749.2 g/km 

Emission index of CO EI CO 37.2 39.4 g/km 

Emission index of NOx EI NOx 5.0 3.9 g/km 

 

 

5.3 Results 

We obtained the driving patterns of Urban 1 and 2 regions by monitoring the second-by-second 

speed of a fleet of 15 buses during eight months. Table 5.4 shows the values of the 19 CPs that 

describe those driving patterns. It shows that the average speed in the Urban 1 and 2 regions 

were 7.3 and 10.0 km/h, respectively, which are typical of regions with highly congested traffic. 

Additional work is required to confirm that the values of those CPs remain unaltered when 

monitoring a large sample of vehicles (100) of different technologies under normal conditions 

of use. It also shows that in these two regions, 14.6 t diesel buses, equipped with 2004 USEPA 

technology, consume 0.4 l/km. Furthermore, it shows that they emit 839.0 and 749.2 g/km de 
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CO2 in Urban 1 and Urban 2 region, respectively. Similarly, they emit 5.0 and 3.9 g/km de 

NOx in Urban 1 and Urban 2 region, respectively. 

 

Using the database of the 1-Hz simultaneous measurements of speed, fuel consumption and 

tailpipe emissions of the 46 trips monitored, we obtained the ARDi and IQRi after constructing 

1000 times DCs by the MT method and using different combinations of assessment parameters 

(Figure 5.1). Then, for each combination, we obtained the 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and 𝐼𝑄𝑅̅̅ ̅̅ ̅ reported in Table 5.5 

for both urban regions. We also obtained the ARDi for SFC and emission indexes shown in 

Table 5.5.  We highlight that those values were obtained after 1000 repetitions of constructing 

DCs via the MT method and using the set of CPs shown in Table 5.5 as assessment parameters. 

Table 5.5 was sorted by the overall average of relative differences (last column). We only show 

the top 15 out of 1140 of the two or three combinations, with the minimum 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and 𝐼𝑄𝑅̅̅ ̅̅ ̅ for 

the 19 CPs, and minimum ARDi for SFC and emission indexes, for each region.   

 

Table 5.5 shows that, as expected, using combinations of 3 CPs tends to produce smaller 𝐴𝑅𝐷̅̅ ̅̅ ̅̅   

and  𝐼𝑄𝑅̅̅ ̅̅ ̅ than with 2 CPs. Only four cases of combinations of two CPs reached the top 15 

cases with overall minimum relative differences.  

 

This table also shows that in all cases, the values obtained for these average relative differences 

are smaller than 14%, which is within the threshold values specified as acceptable (15%).  

Therefore, any of the combinations of CPs shown in Table 5.5 produce DCs with a high 

representation of the driving pattern and high reproducibility of SFC and emission indexes.   

 

In this table, the highlighted numbers indicate the combination with the minimum values for 

each variable in each region. It shows that the combination of KI, % idl, and VSP produce, with 

the highest probability (𝐼𝑄𝑅̅̅ ̅̅ ̅ = 5.3%), the best representation (𝐴𝑅𝐷̅̅ ̅̅ ̅̅  = 7.4%) of the driving 

pattern in the Urban 1 region. For the case of the Urban 2 region, it is produced by the 

combination of SD a+, % idl and Max a- ( 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  = 6.0% and 𝐼𝑄𝑅̅̅ ̅̅ ̅ =5.4%).  

 

However, those combinations do not necessarily produce DCs that best reproduce fuel 

consumption. Table 5.5 shows that Max a-, % cru and Acce/km are the CPs that best reproduce 

SFC in the Urban 1 region and in the Urban 2 region SD a+, % idl, and KI with an ARDSFC of 

3.9 and 3.7, respectively.  

 

Again, SD a+, % idl and Ave S, is the combination of CPs that produce DCs that best reproduce 

NOx emissions (ARDNOx =7.0%) for the case of the Urban 1 region. For the instance of the 

Urban 2 region, SDa+ and Ave S again was the best combination, but this time along with the 

Accel/km (ARDNOx=5.7%). 

 

The combination of CPs that best reproduce CO emissions is the same that for SFC with ARDCO 

of 5.7% and 8.2% for the Urban 1 and 2 regions, respectively. However, we did not obtain an 

agreement in the combination that best reproduce CO2 emissions. SD a+, % idl, and Acce/km 

is the best combination (ARDCO2=5.7%) for the Urban 1 region while SD a+, SD a-, and Ave 

S is the best combination (ARDCO2 =3.5%) for the Urban 2 region. We expected that those 

combinations were the same as the combinations for the best reproduction of SFC. However, 

it was not the case.  
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(a)  

 
(b)  

 
 

Figure 5.1 Illustrative results for ARDi (blue dots), IQRi (boxes) and outliers (red “+”) 

obtained after constructing 1000 times DCs by the MT method and using as assessment 

parameters a.) SD a+,  % idl, and the Ave s which is one of the best combination,  and b.) SD 

a+, Ave a+ and Max a+, which is an arbitrary selected combination. The CPs used by each 

method as criteria for the construction of the DC are marked with (green “*”). 
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Table 5.5 Top 15 out 1140 combinations of CPs that, when used as assessment parameters 

in the MT method, produce DCs that best represent driving patterns and best reproduce fuel 

consumption and tailpipe emissions in 2 urban regions in Mexico. 

Region 
Combination of CPs used as 

Assessment parameters 
𝐴𝑅𝐷̅̅ ̅̅ ̅̅  

(%) 

𝐼𝑄𝑅̅̅ ̅̅ ̅ 

(%) 

ARDi  (%) 
Overall 

Average 

SFC EI CO2 EI CO EI NOx (%) 
U

rb
an

 1
 

KI % idl Ave S 7.5 5.5 4.7 6.0 6.7 11.8 7.0 

KI % a+ Ave S 7.7 6.7 4.0 6.0 6.4 11.8 7.1 

KI % a+ VSP 7.5 6.7 4.2 6.4 6.3 12.4 7.2 

SD a+ % idl VSP 7.9 7.3 6.0 6.9 8.0 7.6 7.3 

KI % idl VSP 7.4 5.3 5.0 6.5 7.3 12.6 7.3 

Max a- % cru Acce/km 7.9 10.8 3.9 5.8 5.7 10.9 7.5 

Max a+ % idl VSP 7.9 7.0 6.4 6.6 9.6 7.6 7.5 

SD a+ % idl Ave S 7.8 9.5 5.8 7.0 8.4 7.0 7.6 

Max a+ -  Ave S 9.4 9.5 4.9 7.0 8.1 7.6 7.7 

SD a+ -  Ave S 9.8 9.7 5.0 7.1 7.2 7.9 7.8 

SD a+ -  VSP 10.0 9.7 5.6 6.9 7.1 7.8 7.9 

SD a+ % idl Acce/km 7.4 7.6 5.9 5.7 7.4 13.6 7.9 

Max a- % idl Acce/km 7.6 9.9 4.8 6.3 7.0 13.1 8.1 

SD S % idl Ave S 8.0 11.1 4.9 6.4 9.2 9.3 8.1 

Max a+ - VSP  9.7 9.7 6.1 7.1 8.4 8.1 8.2 

U
rb

an
 2

 

SD a+ SD a- Ave S 6.9 6.4 4.5 3.5 8.6 6.6 6.1 

SD a+ Max a- Ave S 6.1 5.9 4.5 3.8 8.3 8.0 6.1 

SD a+ % idl KI 6.5 5.5 3.7 4.8 8.2 8.9 6.3 

SD a+ % idl Max a- 6.0 5.4 4.7 4.5 8.3 9.6 6.4 

SD a+ % idl SD a- 6.2 5.9 4.5 4.7 9.0 8.1 6.4 

SD a+ % idl % a+ 6.6 5.9 4.3 5.5 8.9 7.4 6.4 

SD a+  Accel/km Ave S 6.7 6.0 5.3 5.0 9.9 5.7 6.4 

Max S Max a- Ave S 6.8 6.2 4.4 4.4 9.5 7.6 6.5 

SD a+ % idl Accel/km 6.3 5.6 5.8 5.7 9.9 6.0 6.5 

Max a-  Max a+ Ave S 6.5 6.1 4.9 4.5 10.1 7.1 6.6 

SD a+ % idl Ave S  6.3 5.7 5.5 5.4 10.4 6.6 6.6 

SD a+ % idl VSP 6.4 5.6 4.9 5.8 10.5 6.9 6.7 

SD a+ % idl PKE 6.9 5.9 4.3 5.5 8.2 10.0 6.8 

SD a+ % idl % a- 6.7 6.1 5.3 5.5 9.4 9.0 7.0 

SD a+ % idl RMS 6.6 5.8 5.1 6.0 9.7 10.3 7.2 

 

Nonetheless, it is vital to notice that the range of variations of the values reported for  𝐴𝑅𝐷̅̅ ̅̅ ̅̅  , 

𝐼𝑄𝑅̅̅ ̅̅ ̅, and ARDi is small (<6.6%) in comparison to the range of possible variations (0-∞). This 

observation means that any of the 15 combinations reported in Table 5.5 produce similar 

results in terms of representatives of the driving pattern and reproducibility of fuel 

consumption and tailpipe emissions. For example, Table 5.5 also shows that the 15 

combinations of CPs reported for each region, exhibit similar values of 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  (6.9 < 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  
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<10), and therefore any of those combinations produce DCs with an acceptable 

representation of the driving pattern found for each region. Under the previous consideration, 

we found that the % idl and SD a+ are the most recurrent CPs (21% each), followed by Ave 

S (14%). They are followed by VSP and Max a- that showed up in less than 8% of the times. 

That combination showed up (highlighted in Table 5.5) among the top 15 combinations 

reported for each region. Therefore, we concluded that the SD a+, % idl, and the Ave S are 

the CPs that best describe driving patterns, and best reproduce SFC and emission indexes. 

 

5.4 Conclusions  

The design of energy management strategies to optimize the operation of electric and engine-

powered vehicles requires an accurate description of local driving patterns. It also requires 

driving cycles (DCs) that reproduce the real energy consumption and tailpipe emissions of 

the vehicles when they are evaluated on chassis dynamometers. Both driving patterns and 

DCs are described by characteristic parameters (CPs). However, there is disagreement about 

which CPs to use. This work focusses on the determination of the set of CPs that accurately 

describe driving patterns and must be included in the Micro trip (MT) method to construct 

DCs that reproduce energy consumption and tailpipe emissions.  

 

We hypothesized that 2 or 3 CPs are enough to achieve these objectives. Aiming to validate 

this hypothesis, we considered two urban regions in Central Mexico and sampled their 

driving pattern by monitoring second by second the regular operation of 15 vehicles for eight 

months. After data quality analysis, we constructed a database of 46 trips with 1-Hz 

simultaneous measurements of speed, fuel consumption, and tailpipe emissions (CO2, CO, 

and NOx). Then, we constructed DCs via the MT method using combinations of 2 or 3 CPs 

as assessment parameters. We considered 1140 combinations among 19 CPs frequently 

reported in the literature. Using the definition that a DC represents a driving pattern when the 

CPs of the DC and of the driving pattern are similar, we evaluated the degree of 

representativeness. We repeated this process 1000 times for each combination of CPs and 

observed the tendency and dispersion of the relative differences for each of the 19 CPs 

considered and for SFC and emission indexes. We reported the top 15 combinations with the 

highest probability (smallest interquartile range) that the DCs constructed represents the 

driving pattern (smallest average relative differences of corresponding CPs) with the highest 

reproducibility of SFC and emissions (smallest average relative differences of SFC and 

emission indexes).  

 

We observed that all 15 combinations that we reported were within the criteria of acceptance 

of representatives (ARDi <15%). Furthermore, we also observed that the variation in ARDi 

among them was negligible (<10%), and therefore, any of those combinations exhibit a 

similar degree of representativeness. Then we observed that idling time, the standard 

deviation of the positive acceleration, and average speed were the most recurrent. Therefore, 

we concluded that they are the ones that must be included in the MT method as assessment 

parameters to obtain DCs that represent the driving pattern of the region under consideration 

and that reproduce the real energy consumption and tailpipe emission of the vehicles. This 

result agrees with the fact that average speed and the percentage of idling time are the CPs 

most frequently used by researchers for constructing DC. However, our work shows that a 
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third CP (the standard deviation of the positive acceleration) should be included. 

Alternatively, kinetic intensity or vehicle specific power can be used for the same purpose.  

 

Previous conclusions stand for the urban regions considered in this study. Additional work 

is required to extend the scope of these conclusions to any region and any vehicle technology.  
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6 Relationship between the time duration of a driving cycle and 

its representativeness result 

Abstract: Nowadays, there is an interest in representing properly the driving patterns, energy 

consumption and vehicle emissions of a region. Driving pattern is understood as the way that 

people drive their vehicles. One of the ways to represent the driving patterns is through time 

series of speed, denominated driving cycles (DC). The duration of the DC is an important 

factor to represent the driving patterns of a region. Short DCs tend to generate higher fuel 

consumption and emissions results due to fact that the vehicle operates primarily in its warm-

up phase. Longer DCs represent higher costs in the type approval tests. The time duration of 

DCs is a less studied topic in current research of DCs construction. The time duration of each 

DC is unique since it represents local and particular operating conditions. However, there is 

no defined methodology to establish the duration of DCs based on the driving characteristics 

of a specific region. This study aims to study the effect of different time durations of the DCs 

on their representativeness. We used data of speed, time, fuel consumption and emissions of 

travels monitored for eight months from a fleet of 15 buses operating in two flat urban regions 

with different traffic conditions. Using Micro-trips method, we built DCs with a time length 

of 5, 10, 15, 20, 25, 30, 45, 60 and 120 minutes for each region. For each time length, we 

built 500 DCs in order to establish the trend and dispersion of their characteristic parameters. 

The results indicate that for having DCs with relative difference equal or less than 10% 

respect to the driving patterns, the DCs must have a duration of more than 25 minutes. This 

time length also guarantees the representativeness, in terms of energy consumption and 

tailpipe emissions.  
 

Keywords: Representative driving cycles, Time duration of driving cycle, Driving patterns, 

Characteristic parameters, Micro-trips methods. 

 

 

Frequent symbols and acronyms 

 

Symbol Description Units 

ARDi Average relative difference of the ith characteristic parameter % 

CPi 
Values of the ith characteristic parameter that describe the driving 

pattern 
- 

CPi
* 

Values of the ith characteristic parameter that describe the driving 

cycle 
 

IQRi Interquartile range of the ith characteristic parameter - 

SFC Specific Fuel Consumption L/km 

RDi Relative difference of the ith characteristic parameter % 
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6.1 Introduction 

Nowadays, there is an increasing interest to study the manner that drivers drive the vehicles 

in a region, and its impact on the energy consumption for electric vehicles, and fuel 

consumption and tailpipe emissions for vehicles with internal combustion engine. 

Conceptually, local driving patterns is the term to define the average driving characteristics 

of region. The driving pattern can be represented by a speed-time series, denominated as 

driving cycle (DC) [2], [34]. 

The DCs are mainly used to evaluate the fuel consumption and emissions compliances of a 

vehicle model before entering into a country automotive market. Moreover, DCs can be used 

for the powertrain design, to compare performance of the vehicles and to develop emissions 

inventories [18], [36]. In the latest years, with the deployment of hybrid and pure electric 

vehicles, as an alternative to reduce the greenhouse gas (GHG), new DCs have been 

developed for evaluating the energy management, batteries and energy storage capacity, and 

the vehicle mileage [68]. The representativeness of the local driving pattern is the key issue 

of a DC and it depends mainly on three factors: (a) the quality and quantity of vehicle 

operation data, (b) the DC construction method, and (c) the CPs used to assess the DC 

representativeness [33]. 

However, a fourth factor that could affect the local driving cycle representativeness, the 

energy consumption and the tailpipe emissions is the time duration of the DC. Short DCs 

tend to generate higher fuel consumption and emissions results due to the fact that the vehicle 

operates in the warm-up phase and has not reached the normal operating temperature. Longer 

DCs represent higher costs in type approval test [17]. A time duration for the DC must be 

defined to allow the vehicle operates under its normal operating temperature and to properly 

represent the local driving patterns [29], the energy consumption and the vehicle emissions. 

Although the importance of time duration of the DC, this topic has not been totally developed 

by the researchers in their driving cycle construction process. Moreover, the researchers 

defined the duration of the DC based on their experience and knowledge of the driving 

conditions of the study region. Amirjamshidi [69] suggested that a DC generated by micro-

trips method must have a time duration between 10 to 30 minutes. Ho [43] noted down that 

random approaches to build DCs like micro-trips entails to define a pre-determined time 

duration of more than 1000 s without rational scientific justification which is a shortcoming 

in the methodology. Ho [43] performed trip distance and time duration survey. The trip 

distance result was used to define the DC lenght according to the percentage of each type of 

road segment. A driving cycle with time duration of 2344 s was obtained for Singapore. A 

difference of 2.3% between the trip survey (2400 s) and the proposed DC was established. 

The procces followed in the Singapore DC assures the similiraty between the DC and the city 

trip duration. However, this method does not solve the question of the minimun time duration 

of a DC for having a representativeness in terms of local driving patterns, fuel consumption 

and emissions.  Knez [20] developed the Celje driving cycle and found a relation between 

the increse of the average speed, the reduction of the trip time and the traffic conditions. 

Figure 6.1 presents a summary of the time duration and average speed of different driving 

cycles used in the type approval test or developed for different regions around the world.  
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Figure 6.1 Time duration and average speed for driving cycles developed for different 

regions or cities. * Correspond to driving cycles for motorcycles 

 

The aim of this study is to analyze the effect of different values of time duration of the DCs 

on the representativeness of local driving patterns, fuel consumption and tailpipe emissions 

of two urban regions with different traffic characteristics. For this purpose, using the same 

trips database, we built DCs for each region with a time length of:  5, 10, 15, 20, 25, 30, 45, 

60 and 120 minutes. For each time duration, and using the Micro-trip method, we built 500 

DCs in order to establish the trend and dispersion of 19 characteristics parameters used to 

describe both, the local driving patterns and the DCs [19], [30]. The characteristics 

parameters are metrics, like average speed or average positive acceleration, calculated from 

the speed and time data collected in the monitored trips. We define CP as the characteristic 

parameters that describe local driving patterns, while CP* is the characteristic parameter that 

describe the DCs. Relative differences close to zero, between CP and CP* [60] , indicate that 

the DC represents the local driving patterns of a given region accurately.  

 

The paper is organized as follows. In the materials and method section an overview of the 

selected region is introduced. Then, the technical aspect of the vehicles and the 

instrumentation is presented. Next, the details of the monitoring campaing are described. 

Later, the process of building DCs with different time duration and the method to compare 

their results in terms of caharacteristic parameters, fuel consumption and emissions is 
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showed. The next session presents the results obtained for the different time duration. A 

concluding section outlines the main outcomes of the study. 

 

6.2 Materials and methods 

 Region selection  

We developed this study in two urban road located in high altitude. The selected roads are 

part of the MEX 15D road, that connects Toluca-Mexico City. The selected road segments 

have length 11.5 and 18.8 km inside Mexico City (2255 m.a.s.l.) and Toluca City (2611 

m.a.s.l.) respectively. The road of Mexico City is characterized by highly congested traffic 

represented in its Level of Service (LoS) graded F. The road of Toluca City is medium 

congested traffic with a LoS graded on E. The LoS is the level of quality of a traffic facility 

and represents a range of operating conditions, generally in terms of service measures such 

as speed and travel time, freedom to maneuverer, traffic interruptions, and comfort and 

convenience [49]. The characteristics of the selected roads are presented in Table 6.1. 

 

 

Table 6.1 Characteristics of the selected region 

Parameter Unit Urban 1 Urban 2 

Location - Mexico City 
Toluca 

City 

Facility - 
Local 

roadway 
Arterial 

Level of traffic - High Medium 

LoS - F E 

Speed limit km/h 60 60 

Number of lanes - 3 3 

Length km 11.5 18.8 

Ave road grade % 1.4 1.8 

Max road grade % 5.2 9.0 

Min altitude m.a.s.l. 2255 2611 

Max altitude m.a.s.l. 2258 2637 

 Instrumented vehicles 

Fifteen buses were used during the monitoring campaign. The selected vehicles presented 

the same maintenance, route of operation, and technology characteristics to reduce noise. 

They were provided by the passenger transport company Flecha Roja. This company offers 

a non-stop service. The buses were built between 2012 and 2014. They have 49-passenger 

capacity and a gross vehicle weight of 13850 kg. They operate with a diesel engine Cummins 

ISM 425 with emission control EURO IV, power of 425 HP, and torque of 2102 Nm. We 

used the following data: dimensions of 12.85, 3.6, and 2.6 meters long, high and wide 
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respectively, a frontal area of 8.47 m2, a coefficient of rolling resistance of 0.06, and a 

resistance coefficient aerodynamics of 0.64 [50]. The vehicles were loaded with a weight of 

2100 kg of water tanks to simulate the total average weight of passengers. 

 

Vehicle location (Altitude, Latitude, and Longitude) and speed were measured by using a 

global position system (GPS) Garmin 16x. The data sample frequency was 1 Hz. Regarding 

fuel consumption, the On-Board Diagnostics (OBD) system was used to read this variable 

from the Engine Control Unit (ECU). These diesel vehicles have an electronic fuel injection 

system that, according to the opening time of the injector, the instantaneous fuel consumption 

is determined. The data obtained in this way were validated by using an external graduated 

tank, which is the standard procedure to determine the fuel consumption of vehicles [51], 

[52]. Based on the determination coefficient (R2> 0.9) obtained in a correlation analysis 

between the results obtained by these two methods, we concluded that the OBD produces 

reliable data.  

 

The emissions were monitored with a Portable Emission Measurement System (PEMS), 

SEMTECH ECOSTAR model from Sensors Inc. with the modules for measuring CO, CO2, 

NO and NO2. With the SEMTECH-FEM module, CO and CO2 emissions were measured 

using a non-dispersive infrared analyzer, and the SEMTECH-NOx module for NO and NO2 

emissions using a non-dispersive ultraviolet gas analyzer. Both concentration measurement 

systems are recommended by the US Environmental Protection Agency (USEPA) for these 

purposes. At the beginning and at the end of each measurement, the recommended calibration 

procedure by the manufacturer was carried out using NIST traceable calibration gas tanks. 

 

 Monitoring campaign 

Measurements were made in the urban regions described in Table 6.1 during eight months in 

different seasons of the year. In this time, the vehicles were operated by their usual drivers, 

at different times of the day and different days of the week. Then, a data verification and 

synchronization process were carried out to identify atypical data or incomplete trip data (i.e. 

less than 95%) to be discarded, and to align the data readings from the three different 

instruments [57]. After analyzing the monitoring campaign results, 46 monitored trips were 

included on the sample trips data base. 

 

 Comparison of the time DCs duration results 

The selected method to build the DCs was Micro-trips. In this method, the speed-time data 

collected in the vehicle monitoring campaign is partitioned in segments of trips bounded by 

vehicle speed equal to 0 km/h. These segments are called “micro-trips”. Micro-trips are often 

clustered in function of their average speed and average acceleration. Then, some of them 

are quasi-randomly selected based on the frequency distribution of the clusters, and later 

spliced to build a candidate DC 19 20 [1], [48] .  The similarity between the candidate DC 

and the local driving patterns is calculated through the relative difference (RDi) of 

characteristic parameters (CPi CPi*). RDi values equal or smaller than 5% are used as an 

acceptable threshold for selecting a DC. Otherwise, the method restarts and selects a new 
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group of micro-trips and proposed a new candidate DC. Equation 1 presents the function to 

calculate the relative difference. 

 

 

𝑅𝐷𝑖 =
∑(𝐶𝑃𝑖

∗ − 𝐶𝑃𝑖)

𝐶𝑃𝑖
 6.1 

 

 

The relative differences were calculated for the 19 characteristic parameters, two of them 

used as assessment criteria for selecting a DC, the rest of the characteristic parameters were 

calculated to describe the selected DC representativeness. Moreover, the relative difference 

between the average specific fuel consumption of the local driving patterns and the specific 

fuel consumption of the DC was calculated. This analysis was extended to the CO2, CO and 

NOx. Table 6.2 presents the characteristic parameters used in this study. 

 

Due to the stochastic nature of the Micro-trip method, despite the use of same trip database, 

each time the Micro-trip method is implemented the values of CPi* change and consequently 

the RDi values. For this reason, the process was repeated 500 times and the trend and 

dispersion of each RDi were established. The trend was calculated through the Average 

Relative Difference (ARDi), presented in Equation 6.2, while the dispersion was calculated 

through the Inter-quartile range (IQRi). 

 

 

𝐴𝑅𝐷𝑖 =
∑ |𝐶𝑃𝑖,𝑗

∗ − 𝐶𝑃𝑖|
𝑛
𝑗=1

𝑛 𝐶𝑃𝑖
 6.2 

 

 

In Equation 6.2, 𝑛 is the total number of iterations performed (500), and j is the iteration 

number. ARDi and IQRi values close to zero indicate high similarity between the constructed 

driving cycle and the driving pattern. The aim of this study is to analyze the effect of the time 

duration on the DC representativeness, then the trend and dispersion analysis was performed 

for different values of time duration such as 5, 10, 15, 20, 25, 30, 45, 60, and 120 minutes. 

Tables 6.3 and 6.4 presents the ARD results for region urban 1 and urban 2 respectively.  

Characteristic parameters with ARD and IQR results below 5% are highlighted in grey. 

 

A set of metrics to compare which time duration of DC best represents the local driving 

patterns is the average ARD (𝐴𝑅𝐷̅̅ ̅̅ ̅̅ ) and the average IQR (𝐼𝑄𝑅̅̅ ̅̅ ̅).  Equation 3 and Equation 4 

show the manner to calculate the average ARD and the average IQR, respectively. 

 

 

𝐴𝑅𝐷̅̅ ̅̅ ̅̅ =
∑ 𝐴𝑅𝐷𝑖

𝑘
𝑖=1

𝑘
 6.3 

 

 

 

𝐼𝑄𝑅̅̅ ̅̅ ̅ =
∑ 𝐼𝑄𝑅𝑖

𝑘
𝑖=1

𝑘
 6.4 
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The subscripts i refer to any of the CPs in Table 6.2, and therefore k=19. This analysis is 

extended to the specific fuel consumption, and emissions presented in the Table 6.2. Low 

values of average ARD and average IQR indicate that the selected time duration generate 

driving cycles that well represent the local driving patterns, fuel consumption and emissions. 

The 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and  𝐼𝑄𝑅̅̅ ̅̅ ̅  results are presented in a box-plot figure to have an overall view of the 

time duration impact. 

 

 

Table 6.2 Characteristics parameters used to describe the driving cycles in this study 

Type  Name Symbol 

Speed 1 Average speed* Ave Speed 

2 Maximum speed Max Speed 

3 Standard deviation of speed SD speed 

Acceleration 4 Maximum acceleration Max a+ 

5 Maximum deceleration Max a-  

6 Average acceleration Ave a+  

7 Average deceleration Ave a- 

8 Standard deviation of acceleration SD a+ 

9 Standard deviation of deceleration SD a- 

Operational 

modes  

(% of time) 

10 Percentage of idling time* % idling 

11 Percentage Acceleration % a+ 

12 Percentage Deceleration % a- 

13 Percentage Cruising % cruising 

Dynamics 14 No. of acceleration per kilometer Accel/km 

15 Root mean square of accel. RMS 

16 Positive kinetic energy PKE 

17 Speed acceleration probability 

distribution 

SAPD 

18 Vehicle Specific Power VSP 

19 Kinetic Intensity KI 

Emissions and 

energy 

20 Specific fuel consumption* SFC 

21 Emission index of CO2 EI CO2 

22 Emission index of CO EI CO 

23 Emission index of NOx EI NOx 

*: parameters were used as assessment criteria to evaluate the DC representativeness respect 

to driving patterns.  

 

6.3 Results  

Tables 6.3 and 6.4 present the ARD results of the characteristic parameters for regions Urban 

1 and Urban 2. We observe that driving cycles with short time length (<10 min) present less 

number of CPs with an ARD below 5%. For the region Urban 1, DCs with a time length of 

5 and 10 min present up to 2 of 17 CPs with ARD values below 5%. For Urban 2, DCs with 

a time duration of 5, 10 and 15 min present up to 3 of 17 CPs with ARD values below 5%. 

When the time duration of DCs increase above 15 min, the number of CPs with an ARD 
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values below 5% increase. It means that DCs with time duration greater that 15 min better 

represent the driving patterns of the studied region. DCs with a time duration close to 120 

min present 13 CPs below 5%, in both regions. However, due to the high cost of 

dynamometer type approval test and the several amount that are tested before entering in an 

automotive market, is not feasible to have DCs with 120 min of time length.  

 

In order to establish the suitable time duration of the DCs for both regions, we calculated the  

𝐴𝑅𝐷𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐼𝑄𝑅𝐶𝑃

̅̅ ̅̅ ̅̅ ̅̅ . The Figure 6.2a presents the results of the 𝐴𝑅𝐷𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐼𝑄𝑅𝐶𝑃

̅̅ ̅̅ ̅̅ ̅̅ , while 

Figure 6.2b presents the same analysis (𝐴𝑅𝐷𝐸𝐼
̅̅ ̅̅ ̅̅ ̅̅  and 𝐼𝑄𝑅𝐸𝐼

̅̅ ̅̅ ̅̅ ̅̅ ) for the vehicle emissions on region 

Urban 1. Same analysis is performed for the region Urban 2 in the Figure 6.3. 

 

 
(a) 

 

 
(b) 

Figure 6.2 (a) Average ARD and average IQR of characteristic parameters for different 

driving cycle time duration. (b) Average ARD and average IQR of emissions for different 

driving cycle time duration, for the region Urban 1 
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Table 6.3 ARD results of the DCs characteristic parameters for the Urban 1 region 

  DC time length (min) 

ARD of Characteristic 

Parameters 
5 10 15 20 25 30 45 60 120 

Ave Speed* 3.4 2.7 1.9 2.5 2.6 2.5 2.5 2.5 2.5 

Max Speed 26.8 17.1 10.0 6.6 2.5 2.2 4.6 5.9 10.8 

SD Speed 22.3 25.6 23.3 17.9 8.1 8.1 6.1 6.7 5.4 

Max a+ 0.2 2.4 6.1 1.8 0.6 0.6 0.0 0.0 0.0 

Max a- 4.2 9.7 11.8 9.1 4.9 3.5 1.8 0.7 0.1 

Ave a+ 8.9 8.0 6.3 3.9 2.9 2.8 2.3 1.9 1.3 

Ave a- 22.5 9.5 7.0 4.7 5.5 5.1 3.4 3.7 2.7 

SD a+ 27.1 9.6 7.5 5.0 3.1 3.2 2.5 2.2 1.5 

SD a- 37.1 16.5 8.3 7.6 7.9 6.8 5.1 4.8 3.4 

% Idling* 2.2 3.1 2.4 2.5 2.4 2.5 2.5 2.6 2.4 

% a+ 8.2 6.5 3.6 2.2 2.5 2.4 1.8 1.9 1.4 

% a- 5.9 3.0 3.5 2.9 2.5 2.5 2.4 2.0 1.4 

% cruising 18.3 11.6 8.6 4.2 3.6 4.1 3.7 3.3 2.4 

Accel/km 18.5 5.7 35.8 25.1 17.2 15.8 12.2 13.8 12.9 

RMS 25.2 12.4 8.3 4.9 4.4 4.1 3.0 3.0 2.1 

PKE 22.6 11.7 8.3 5.3 5.0 4.6 5.1 4.2 2.9 

SAPD 17.8 13.0 10.5 7.5 3.7 3.5 2.3 2.2 1.6 

VSP 6.0 7.0 2.6 4.0 3.3 3.1 3.7 3.1 2.5 

KI 121.6 91.7 67.6 53.4 26.2 26.0 19.0 20.3 18.6 

SFC* 3.5 3.4 1.2 2.5 2.6 2.5 2.6 2.5 2.6 

EI CO2 7.9 15.9 1.8 4.4 4.9 4.1 3.8 3.3 3.4 

EI CO 16.7 12.9 17.3 9.0 6.8 6.3 5.2 4.7 4.2 

EI NOx 5.2 21.0 9.9 8.7 7.5 8.8 6.9 7.3 6.5 
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Table 6.4 ARD results of the DCs characteristic parameters for the Urban 2 region 

  DC time length (min) 

ARD of Characteristic 

Parameters 
5 10 15 20 25 30 45 60 120 

Ave Speed* 1.9 2.4 2.6 2.4 2.5 2.5 2.4 2.5 2.3 

Max Speed 11.0 7.2 5.4 4.6 4.1 4.0 4.3 4.4 5.6 

SD Speed 10.4 6.8 6.9 5.2 4.6 4.9 4.9 4.1 3.1 

Max a+ 0.7 4.2 1.8 1.5 0.9 0.6 0.2 0.1 0.0 

Max a- 37.6 10.7 7.4 4.7 3.4 2.1 0.8 0.4 0.0 

Ave a+ 11.6 4.6 4.2 3.9 4.0 3.9 3.1 2.5 2.0 

Ave a- 14.4 11.0 8.5 6.2 6.5 6.3 5.3 4.6 3.5 

SD a+ 6.9 6.2 7.0 5.9 4.9 4.7 3.9 3.3 2.5 

SD a- 25.2 14.8 11.0 7.4 7.1 7.3 5.9 5.3 3.9 

% Idling* 1.7 2.7 2.5 2.5 2.5 2.4 2.5 2.5 2.5 

% a+ 3.6 5.2 5.6 4.4 4.0 3.6 3.3 3.0 2.9 

% a- 10.8 9.2 7.9 6.6 6.0 5.9 5.3 5.5 6.3 

% cruising 11.0 13.4 12.8 10.6 9.8 8.6 7.0 6.1 4.8 

Accel/km 6.8 11.3 12.4 11.4 9.3 9.3 8.3 8.3 9.3 

RMS 16.2 5.6 5.4 4.3 4.4 3.9 3.6 3.1 3.2 

PKE 19.0 6.4 7.0 5.7 5.5 4.8 4.3 3.9 3.3 

SAPD 8.0 5.9 4.9 3.4 2.8 2.5 1.9 1.5 0.8 

VSP 3.0 6.4 5.9 6.8 6.5 6.1 6.0 6.0 6.4 

KI 28.6 11.1 8.9 8.6 8.6 7.8 6.3 6.0 4.8 

SFC* 1.9 2.8 2.7 2.6 2.4 2.4 2.3 2.4 2.3 

EI CO2 8.3 7.2 6.2 4.4 4.1 4.3 3.5 3.0 2.4 

EI CO 15.1 11.7 11.8 9.3 7.9 8.4 7.0 6.0 4.9 

EI NOx 21.5 8.8 8.1 7.7 7.3 7.5 6.9 7.3 7.6 
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In the Figure 6.2a, we observed that DCs with a time duration below 15 minutes present the 

highest values of  𝐴𝑅𝐷𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅ (>12.3%). For a time duration of 20 minutes the 𝐴𝑅𝐷𝐶𝑃

̅̅ ̅̅ ̅̅ ̅̅ ̅ were below 

10% (9%). The increase of the driving cycle time duration decreases the 𝐴𝑅𝐷𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅ values. 

Then, the lowest result of the 𝐴𝑅𝐷𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅ is obtained at 120 minutes (4%). However, a driving 

cycle of 120 minutes of duration is not feasible from the economic point view in the type 

approval test, as we explained before. The increase of the time duration also decreases the 

𝐼𝑄𝑅𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ . Driving cycles with a time duration higher that 25 min present 𝐼𝑄𝑅𝐶𝑃

̅̅ ̅̅ ̅̅ ̅̅ ,  results below 

5%.  

 

Short DCs, with time duration below 10 minutes, are not capable to represent the local driving 

patterns of the region Urban 1, then the 𝐴𝑅𝐷𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅  of the characteristic parameters is higher. On 

the other hand, long DCs, with time duration above 45 min, are capable to represent the local 

driving patterns. The latter is confirmed with the low values of 𝐴𝑅𝐷𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅  of the characteristic 

parameters. DCs with a time duration between 20 to 30 minutes present medium-low values 

of 𝐴𝑅𝐷𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅ with a reasonable time length. This analysis was extended to the emissions 

𝐴𝑅𝐷𝐸𝐼
̅̅ ̅̅ ̅̅ ̅̅  obtaining similar results. Figure 2b showed that a time duration of 20 minutes, made 

the 𝐴𝑅𝐷𝐸𝐼
̅̅ ̅̅ ̅̅ ̅̅  tends to decrease below 10%. 

 

Considering the number of CPs below 5%, the 𝐴𝑅𝐷𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅,  𝐴𝑅𝐷𝐸𝐼

̅̅ ̅̅ ̅̅ ̅̅  , 𝐼𝑄𝑅𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ , and 𝐼𝑄𝑅𝐸𝐼 ̅̅ ̅̅ ̅̅ ̅̅ results, 

for the Urban 1 region we recommend a DC with a time length not below of 25 min. This 

time duration guarantees average ARDs below 6.43%, while IQRs remain below 6.03%, 

which means that the proposed DCs well represent the driving patterns of the study region.  

 

For the Urban 2, in Figure 6.3a we observe a similar behavior respect to the Urban 1. DCs 

with time duration below 5 min present 𝐴𝑅𝐷𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅   above 10%.  The 𝐴𝑅𝐷𝐶𝑃

̅̅ ̅̅ ̅̅ ̅̅ ̅   tends to decrease 

when the DCs time duration increases. Moreover, the Figure 6.3b show that DCs with time 

duration above 10 min present 𝐴𝑅𝐷𝐸𝐼
̅̅ ̅̅ ̅̅ ̅̅  values around 10%. With this result we could conclude 

that the driving cycle for the region Urban 2 should have a time duration above 10 min. 

 

 
 (a) 
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(b) 

Figure 6.3 (a) Average ARD and average IQR of characteristic parameters for different 

driving cycle time duration. (b) Average ARD and average IQR of emissions for different 

driving cycle time duration, for the region Urban 2 

 

In the case of the region Urban 2, we suggest DCs with a time duration not below 20 min. 

This time length assures DCs with  𝐴𝑅𝐷𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅, and  𝐴𝑅𝐷𝐸𝐼

̅̅ ̅̅ ̅̅ ̅̅   below 7.15%, while  𝐼𝑄𝑅𝐶𝑃
̅̅ ̅̅ ̅̅ ̅̅ , and 

𝐼𝑄𝑅𝐸𝐼 ̅̅ ̅̅ ̅̅ ̅̅   remain below 7%. 
 

6.4 Conclusions 

In this study we analyzed the effect of time duration on the generation of driving cycles that 

truly represent the local driving patterns, and reproduce the fuel consumption, and tailpipe 

emissions for two urban regions located in a flat and densely populated regions with different 

traffic conditions. Driving cycles with time duration of 5, 10, 15, 20, 25, 30, 45, 60 and 120 

minutes were built using a common trip database and the Micro-trip method. Nineteen 

characteristic parameters were used to compare the local driving patterns respect to the 

proposed driving cycles. This comparison was extended to the emissions of CO2, CO and 

NOx and for the different time durations. In the region Urban 1, DCs with time duration 

below 10 minutes, presented an average ARDCP higher than 14%, while long DCs with time 

duration above 45 min, presented the ARDCP lower than 4.5%. The average ARDEI showed 

the same tend to decrease when the driving cycle time length increase. We propose that the 

driving cycle for this type of fleet and for this specific urban region has a time duration of 25 

minutes. For this time duration we observe that DCs presented values of  𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and 𝐼𝑄𝑅̅̅ ̅̅ ̅ equal 

or below 6.43%. This analysis was extended to the region Urban 2, which presented average 

ARDCP and average ARDEI below 10% for DCs with a time length higher than 10 min. For 

this region we propose DCs with a time length not below to 25 min. This time length assures 

to have DCs for the region Urban 2 with 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and 𝐼𝑄𝑅̅̅ ̅̅ ̅ equal or below 67.15%. Driving 

cycles with this time duration are feasible to implement in the type approval test. More data 



 

 
105 

needs to be collected in more regions and with different vehicle fleets to validate the proposed 

analysis. 
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7 Development of telemetry equipment for monitoring fuel 

consumption and vehicle operating variables  

Abstract: the interest in studying the use patterns of internal combustion, hybrid and electric 

vehicles under real operating conditions, has led to the development of local driving cycles. 

These cycles are commonly used to calculate the mechanical performance, the energy and 

environmental impact produced by the operation of a fleet of vehicles in a region. To develop 

a local driving cycle, the vehicle operating data is acquired under real driving conditions. The 

amount and quality of the gathered data influence the representativeness of the proposed local 

driving cycle. For the development of a driving cycle, it is necessary to record the operating 

data from the trip of the vehicle with a sampling frequency equal or greater than 1 Hz. 

Traditional methods for constructing driving cycles, such as Micro-trips (MT) or Markov 

Chains Monte Carlo (MCMC), require speed and time values as input data. However, the 

Energy-Based Micro-trip (EBMT) method requires not only speed data but also energy 

consumption data. Some of the vehicle monitoring devices available in the market do not 

allow to record and access data on speed and energy consumption with the required sampling 

frequency. This study presents the development of telemetry equipment to record the fuel 

consumption and operating variables of a vehicle under real driving conditions with a 

frequency of 1 Hz. The operating scheme of the equipment, the elements integrated into its 

development, and the data analytics process are presented in detail. The fuel consumption 

tests carried out for the equipment validation showed a coefficient of determination R2 of 

98.54% between the readings of the telemetry equipment and the gravimetric tests. 

 

Keywords: on-board diagnosis (OBD), fuel consumption, vehicle speed, telemetry, 

gravimetric test. 

 

 

Frequent symbols and acronyms 

 

Symbol Description Units 

OBD On-board diagnosis  

RD Relative difference  % 

MT Micro-trip  

MCMC Markov Chain Monte Carlo  

EBMT Energy based micro-trip  

𝑚̇𝑎𝑖𝑟 Air mass flow g/s 

 𝑚̇𝑓𝑢𝑒𝑙  Fuel mass flow  g/s 
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7.1 Introduction 

 

Pollutant emissions, high energy consumption, accident levels, and mobility problems 

produced by the exponential increase in the number of vehicles, are the main reasons for 

seeking to monitor and to analyze the operation of public and private road transport systems. 

Currently, developments associated with the Internet of Things (IoT), big data, and 

information and communication technologies (ITC) facilitate the possibility to remotely 

record the operation of large vehicle fleets, as well as private passenger vehicles. 

 

All end-user energy sectors are being impacted by digitalization technologies. Specifically, 

in the transport sector, new vehicles are built to be more and better connected internally and 

externally, making them "smarter", increasing their levels of safety and efficiency. The 

digitalization of transport and electric mobility could drastically change the schemes of how 

we transport people and goods [70]. 

 

The digitalization of transport essentially corresponds to the concept of "intelligent transport 

systems" (ITS), which implies: the deployment of sensors for data collection; use of 

communication technologies to allow remote control; and the application of advanced 

analytics to improve system operations, security, efficiency, and service, as well as to reduce 

costs [71]. 

 

In the research processes, data collection plays a fundamental role due to its relationship with 

the quality of the result, which is influenced by the reliability, representativeness, 

homogeneity, and consistency of the data that has been collected [3]. Collecting and remotely 

accessing large amounts of vehicle operation data under real driving conditions becomes a 

benefit for studying and understanding, through local driving cycles, the driving patterns of 

a region that influence the fuel consumption and vehicle emissions. For the construction of 

local driving cycles, researchers have essentially identified four steps: i) the selection of the 

study region, ii) the collection of the vehicle operating data, iii) the construction of the driving 

cycle, and iv) the assessment of the cycle representativeness [3].  

 

In the vehicle operation data collection phase, speed and time are normally recorded, being 

the input information required by stochastic methods such as Micro-trips (MT) [24], [40], 

[43] and Markov Chain Monte Carlo (MCMC) [1], [44], [45] to propose synthetic driving 

cycles. Speed and time data are also used by the deterministic method such as the Trip Based 

method (TBM) [2] to select one of the monitored trips as a driving cycle. In recent years, the 

Fuel-based (FB) method [60] and the Energy-based micro-trip (EBMT) method [72] have 

proposed to collect, in addition to speed and time, data on the energy consumption of the 

vehicle. These data guarantee the representativeness of driving cycles with respect to driving 

patterns and the reproducibility of energy consumption and vehicle emissions of the studied 

region. 

 

The state of art indicates that two methods have been used to collect operational data from a 

vehicle fleet, the chase car method, and the on-board measurement method [3] . In the first 

approach, an instrumented vehicle follows a target vehicle on a predetermined route. The 

speed-time data used in the LA92, LA01, and the Manila driving cycle were collected 
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through the chase car method [3]. Although the implementation cost of the chase car method 

could be more efficient, it has drawbacks in terms of the achieved data sample size. On the 

other hand, in the on-board measurement approach, each vehicle of the fleet is instrumented 

to collect second-by-second data. The data used for the development of the ARTHEMIS 

driving cycles and the Australian Composite Urban Emissions Drive Cycle were collected 

by this method [3]. Although the on-board measurement allows to collect a large amount of 

data, the implementation costs and the time required to filter and analyze a large amount of 

data can be a disadvantage. 

 

Both methods of data collection for the construction of driving cycles are based on the 

monitoring and storage of information from instrumented vehicles. In some cases, the access 

to the registered data is done through the equipment installed in the vehicle. While in other 

devices the collected data is sent through the GPRS communication data network to a storage 

server. 

 

Currently, different devices are capable of monitoring the operation of vehicle fleets. 

However, there is no universal device that can be used in all types of vehicles, since there are 

restrictions due to the configuration of the connection port or the languages used in the 

communication between the device and the computer of the vehicle. Devices such as the 

ELM 327 microcontroller allows the storage of the operation data of a vehicle and to access 

them manually and "offline" through a computer or a mobile phone. Once the operation data 

of the vehicle is accessed, the user can send it to a server or email. On the other hand, it is 

possible to use devices that do not require human intervention for the collection, storage, and 

transmission of data. Azuga, for example, is a system used to register the localization and 

operation of the vehicle events such as average and high speed, aggressive accelerations and 

braking.  Devices like Bitbrew and Aytomic allow to customize their information platforms. 

Although the aforementioned device options offer remote access to vehicle fleet operating 

information, their approach is oriented to the logistical control of the fleet, and not to 

determine the energy and environmental impact of the vehicles. Likewise, the sampling 

frequencies and the access and visualization schemes of the collected data are not suitable 

for the energy and environmental analysis of the fleet. 

 

This study presents the development of a telemetry equipment to automatically monitor, 

store, transmit, and analyze the fuel consumption and operating variables of a vehicle 

operating under real driving conditions. The design of this equipment, the type of operation 

to be monitored, the variables that are recorded, and the information management, are based 

on the requirements to build driving cycles using the EBMT. The equipment is capable to 

operate continuously and transmit vehicle operation data without user intervention. Vehicle 

operation data is acquired with a sampling frequency of 1 Hz and is subsequently stored on 

a Raspberry PI 3 B + card. A protocol for transmitting the collected data to a Dropbox account 

is activated frequently. In this way, the CSV files that contain the operation data of the vehicle 

can be analyzed remotely. These files are the input data required by the EBMT method for 

the construction of local driving cycles. 
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7.2 Materials and method 

 Description of the telemetry equipment 

Three different types of devices for monitoring and tracking vehicle fleets are identified on 

the market. However, none of the equipment that was analyzed was designed to collect 

detailed information on the operation of the fleet to carry out an energy and environmental 

analysis using local driving cycles. To face this issue, the telemetry equipment obtains 

different intrinsic signals from the vehicle synchronously, organized, and with a frequency 

of 1 Hz. The system is based on On-Board Diagnosis (OBD) technology and was 

programmed with Python to acquire the signals presented in Table 7.1. 

 

 

Table 7.1 Measured and calculated signals through the telemetry equipment. 

 

Signals Units 
Type of 

signal 

Uncertainty Measuring principle 

Speed (SPD) km/h Measured 

± 10% of 

the output 

signal 

Hall effect sensor  

Engine speed 

(RPM) 

Revolutions 

/ minute 
Measured ± 0.5 mm Hall effect sensor 

Manifold 

absolute 

pressure  (MAP) 

kPa Measured ±2.38 kPa 

Variation in electrical 

resistance as they are 

subjected to the air 

vacuum pressure in the 

intake manifold or 

manifold  

 

Intake air 

temperature 

(IAT) 

K Measured 

±9.93% of 

the output 

signal 

The resistance of the 

temperature sensor 

changes depending on 

the intake-air 

temperature. As the 

temperature increases, 

the resistance is reduced, 

which reduces the 

voltage at the sensor  

Latitude (LAT) 

and longitude 

(LON) 

Degree Measured ±2.5 metros Satellite triangulation  

Engine Load % Calculated   

Altitude m.a.s.l Calculated   

Air mass flow 

(𝑚̇𝑎𝑖𝑟) 
g/s Calculated 
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Fuel mass flow 

(𝑚̇𝑓𝑢𝑒𝑙) 
g/s Calculated 

  

 

 

LAT and LON data are established through a digital geolocation sensor neo6mv2. This 

sensor delivers the vehicle location with a position accuracy of 2.5 meters at 5 Hz. On the 

other hand, the signals of SPD, RPM, MAP, IAT, and LOAD are signals that are acquired 

directly from the sensors of the vehicle through the OBD. Due to the sampling frequency of 

1 Hz, the mass flow of intake air (𝑚̇𝑎𝑖𝑟) is calculated. Then, using the stoichiometric air-fuel 

ratio (AFR) the mass flow of fuel (𝑚̇𝑓𝑢𝑒𝑙) is established. Equations 7.1 and 7.2 present the 

calculation of (𝑚̇𝑎𝑖𝑟), and (𝑚̇𝑓𝑢𝑒𝑙), respectively. 

 

 

𝑚̇𝑎𝑖𝑟 =  (
𝑅𝑃𝑀 ∗ 𝑀𝐴𝑃 ∗ 𝜂𝑣𝑜𝑙 ∗ 𝐸𝑛𝑔𝑖𝑛𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

2 ∗ 60 ∗ (273 + 𝐼𝐴𝑇) ∗ 𝑅𝑎𝑖𝑟
) ∗ 1000 

 

 

(7.1) 

 

 

 

𝑚̇𝑓𝑢𝑒𝑙 =  
𝑚𝑎𝑖𝑟̇

𝐴𝑅𝐹𝑠𝑡𝑐ℎ
 

(7.2) 

 

 

In Equation 7.1, the air mass flow is calculated from the RPM, MAP, and IAT, the volumetric 

efficiency (𝜂𝑣𝑜𝑙), the engine size, and the particular air gas constant R, which has a value of 

0.287 
kJ

kg∗K
. Equation 7.2 presents the calculation of the fuel mass flow (𝑚̇𝑓𝑢𝑒𝑙) from the air 

mass flow (𝑚𝑎𝑖𝑟̇ ) and the stoichiometric air-fuel ratio. For this particular case, a value of 

14.13 was used considering the fuel used is E8 (92% gasoline and 8% ethanol). We use this 

approach due to in positive ignition engines the operating dose is closer to stoichiometric 

point. However, this method does not consider the operation in transient states, which can 

produce inaccuracy on the final results. In the case of the volumetric efficiency (𝜂𝑣𝑜𝑙), the 

value used varies as a function of the RPM and the manifold pressure registered. The 

volumetric efficiency table was obtained from a vehicle with a 1.6 L and four cylinders 

engine [73] 

 

Table 7.2 Volumetric efficiency for different values of RPM and Manifold pressure  

 
    RPM 

    <=1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 

Manifold 

pressure 

[kPa) 

0 0.57 0.68 0.70 0.69 0.68 0.68 0.72 0.74 0.76 0.81 

30 0.57 0.68 0.70 0.69 0.68 0.68 0.72 0.74 0.76 0.81 

35 0.64 0.75 0.77 0.76 0.75 0.75 0.79 0.81 0.83 0.88 

40 0.63 0.74 0.76 0.75 0.74 0.74 0.78 0.80 0.82 0.87 

42.5 0.65 0.76 0.78 0.77 0.76 0.76 0.80 0.82 0.84 0.89 
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45 0.63 0.74 0.76 0.75 0.74 0.74 0.78 0.80 0.82 0.87 

50 0.63 0.74 0.76 0.75 0.74 0.74 0.78 0.80 0.82 0.87 

55 0.64 0.75 0.77 0.76 0.75 0.75 0.79 0.81 0.83 0.88 

60 0.60 0.71 0.73 0.72 0.71 0.71 0.75 0.77 0.79 0.84 

65 0.57 0.68 0.70 0.69 0.68 0.68 0.72 0.74 0.76 0.81 

70 0.52 0.63 0.65 0.64 0.63 0.63 0.67 0.69 0.71 0.76 

 

 

The entire system is controlled by a robust methodology partitioned into three operating 

algorithms. The three algorithms are: i) connection, ii) acquisition, and iii) transmission. The 

algorithms are independent, but they interact with each other for the correct operation of the 

telemetry equipment. The operation and interaction between algorithms can be seen in Figure 

7.1. 

 

 

 
 

Figure 7.1 Control methodology of the telemetry equipment 

 

 

The system initiates and deploys the three control systems starting with the connection 

algorithm. This algorithm is programmed to search for an OBD module through Bluetooth 

communication, which has a predetermined MAC address. The algorithm scans nearby 

Start of the telemetry equipment

Search OBD2  

by MAC

Signal capture

RPM readings

Create the 

CSV with the 

signals

Date and time 

synchronization

Server 

connection

CSV Shipping

RPM > 0
RPM = 0

No
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with OBD2
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RPM > 0
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CSV file 
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Yes

No

OBD2 Device 

found

Connected 

device
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Connection 
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devices every two seconds to find and connect to the OBD. Failure to find a device would 

imply the repetition of the entire process. 

 

The second control algorithm is the acquisition algorithm, which starts with an infinite loop 

that only ends when an OBD module is found in the device list of the system. After the OBD 

module is detected, it begins to monitor the RPM, if it detects that the speed of the engine 

speed is zero, the whole process is repeated from the beginning. On the other hand, if the 

RPM is greater than zero, the five signals from the engine and the two geolocation signals 

are captured and organized as a vector. This process is iterative at a frequency of 1Hz until 

the engine speed is zero again, which indicates that the vehicle was turned off. When the 

vehicle shuts down, a CSV file is generated. This file contains the measured and calculated 

signals, which are organized in a column. The file is named with a vehicle identifier, date, 

and time, which avoids overlapping or replacing files. Finally, the file is moved to a specific 

location so that it is manipulated by the transmission algorithm and the RPM monitoring 

process is restarted. It should be noted that the acquisition algorithm bases its operation on 

the fact that it is inefficient to acquire signals from a vehicle that is switched off. 

 

The last section is the transmission algorithm, which is in charge of sending all the generated 

files to the cloud. The algorithm starts with an update of the device date and time. When a 

stable communication channel is established, the stored files predetermined location begins 

to be monitored. If recent files are found in this location, the algorithm uploads them to the 

cloud using a General Packet Radio Communication protocol (GPRS). Once all files are 

uploaded, the default location continues to be monitored every 5 seconds while waiting for 

new files.  

 Elements integrated into the telemetry equipment 

The equipment must be inside the vehicle, so it must be portable, small, and operating 

automatically, i.e., decoupling its operation from the action of the driver. To achieve this, the 

telemetry equipment is made up of three different components as shown in Figure 7.2. 

The telemetry equipment is made up of the OBD device, which acquires the signals from the 

computer of the vehicle and through Bluetooth communication transmits the data to a control 

system. A Raspberry PI 3 B + (RPI3B) was chosen as a control system for the automation of 

the entire process. The RPI3B has different peripheral ports, 1 GB of RAM, and supports up 

to 32 GB of storage, which would allow continuous data to be stored for more than 10 years. 

The RPI3B operates using a Linux-based operating system and it is responsible for deploying 

the Python-based acquisition methodology. Finally, a 3G technology Huawei e303 USB 

transmission system is connected to the RPI3B, which allows connectivity and data 

transmission in an organized and non-encrypted way to a cloud. It should be noted that the 

entire monitoring system is powered directly by the battery of the vehicle. No configuration, 

adaptation or alteration of the electrical system of the vehicle is necessary since the OBD 

port provides the necessary power. 
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Figure 7.2 Components of the telemetry equipment 

 Used vehicle to test the telemetry equipment 

The developed telemetry equipment was installed in a light passenger vehicle to validate its 

operation. The technical characteristics of the vehicle are presented in Table 7.2. Likewise, 

the equipment was installed in 3 other vehicles from different automakers and models. 

However, the equipment operation was only achieved in one of them, because the connection 

of the equipment with the vehicle depends on the communication compatibility of the OBD 

system used. In this sense, before installing the telemetry equipment in a large fleet of 

vehicles, the compatibility of the OBD system must be verified. This compatibility can be 

done through the use of a mobile phone application like Torque Pro. 

 Method to validate the speed signals 

The telemetry equipment was designed to deliver speed values with a sampling frequency of 

1 Hz. This speed is recorded directly from the computer of the vehicle, which in turn is 

acquired through the sensor located on the wheels of the vehicle. Recorded speed data is 

critical to building a driving cycle. The speed readings obtained through the device were 

compared with the speed data of the vehicle obtained under the WLTC 3a driving cycle 

simulated in a chassis dynamometer. The graphic results of this comparison are presented in 

Figure 7.3. Yet, an analysis based on the determination coefficient R2, is developed to assess 

the similarity between the data registered of speed by the telemetry equipment and the WLTC 

3a speed data.  

 

 

Table 7.3 Technical datasheet of the used vehicle 

Vehicle characteristics Type or value 

Type of fuel Gasoline 

Ignition system Distributorless ignition system (DIS) 

Transmission systemControl systemCapture system
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Engine capacity (cm3) 1558 

Bore (mm) & Stroke (mm) 79 & 81.5 

Number of cylinders  4 

Number of valves  16 

Maximum power (hp) 103 @ 6000 rpm 

Maximum torque (N m) 144.91 @ 3600 rpm 

Compression ratio 9.5:1 

Transmission Mechanical of 5 gears 

Curb weight (kg) 1040 

 

 Method for validating energy consumption records 

The developed equipment calculates and delivers energy consumption every second. In the 

case of an internal combustion engine, energy consumption can be expressed as a function 

of the volumetric flow or mass flow of fuel. A comparison was proposed between the values 

delivered by the telemetry equipment (𝑚̇𝑓𝑢𝑒𝑙−𝑒𝑞) and the direct measurement of the mass of 

fuel consumed by the vehicle, which is called the gravimetric test (𝑚̇𝑓𝑢𝑒𝑙−𝑔𝑟𝑎). This 

comparison was developed to validate the equipment readings and was performed through 

the relative difference, which is calculated using Equation 7.3. 

 

 

𝑅𝐷𝑓𝑢𝑒𝑙 = |
𝑚̇𝑓𝑢𝑒𝑙−𝑒𝑞 − 𝑚̇𝑓𝑢𝑒𝑙−𝑔𝑟𝑎

𝑚̇𝑓𝑢𝑒𝑙−𝑔𝑟𝑎
| (7.3) 

 

 

 

Before carrying out the tests, the balance measurement was verified with reference masses 

of 1 kg, 2 kg, and 5 kg. The results of this verification are presented in Table 7.3. 

 

 

Table 7.4 Verification of values reported by the scale using mass 

  Values reported by the scale (g)    

Mass of 

reference (g) 
1st read 2nd read 3rd read 4th read 5th read Average 

Standard 

deviation 

1000 1000 999.5 999.5 1000 1000 999.8 0.27 

2000 2000 1999.5 2000 2000 2000 1999.9 0.22 
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2000 2000 2000 2000 2000 2000 2000 0.00 

5000 5000.5 5000 5000 5000 5000 5000.1 0.22 

 

 

Twenty-seven operating conditions were used to compare the results obtained with the 

telemetry equipment with respect to those obtained with the gravimetric test. Some of these 

conditions were simulated using a chassis dynamometer, while others were performed under 

real driving conditions on urban and suburban routes. These operating conditions were 

proposed to identify any particular condition of vehicle operation that could generate less 

accurate results. The set of operating conditions that were evaluated are presented in Table 

7.4. 

 

 

Table 7.5 Set of driving conditions used to test the telemetry equipment 
Test Number of repetitions Type 

30 km/h 1 Steady state & under warm-up 

phase 

30 km/h 4 Steady state 

50 km/h 4 Steady state 

70 km/h 4 Steady state 

Random  4 Transient 

Real world conditions 3 Transient & urban conditions 

Real world conditions 1 Transient & sub-urban conditions 

Idling  1 Steady state - 30 min 

Idling   1 Steady state - 60 min 

Driving cycle 3 Transient & Low and medium 

phase of WLTC Class 3a 

Driving cycle 1 Transient & Low, medium, high 

and extra high of WLTC Class 

3a 

 

The coefficient of determination R2 is used to assess the correlation between the values 

delivered by the telemetry equipment and those measured in the gravimetric test. The slope 

of the equation relates the measured fuel mass values with those delivered by the equipment.  
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7.2.6 Construction of the driving cycle through the Energy Based Micro-trip (EBMT) method 

 

After confirming that the fuel consumption values registered by the telemetry equipment are 

similar to the ones measured under the gravimetric test, the data of the real-world condition 

trips are used to construct the local driving cycle.  

 

The selected method to construct the driving cycle is the Energy Based Micro-trip (EBMT) 

method which was explained in chapter 4 (Driving cycles that reproduce driving patterns, 

energy consumptions and tailpipe emissions). This method constructs driving cycles using 

the micro-trips procedure and using as the assessment criteria the energy consumption on top 

of characteristic parameters calculated from the speed time data. The preliminary steps, prior 

to constructing the local driving cycle, are to identify the main characteristic parameters 

(Chapter 5 - Main characteristic parameters to describe driving patterns), and to define the 

time length of the driving cycle (Chapter 6 - Relationship between the time duration of a 

driving cycle and its representativeness result). In the results section the obtained driving 

cycle is presented. 

 

7.3 Results 

Figure 7.3 presents the speed values collected by the telemetry equipment related to the speed 

data of the driving cycle WLTC 3a. This cycle presents 4 different phases of operation 

according to the reached vehicle speeds. We can see that in the low-speed area (time less 

than 580 seconds) and medium speeds area (time between 580 to 1022 seconds) the values 

reported by both methods are similar. In the high-speed area (between 1022 and 1477 

seconds), the maximum speed recorded by WLTC 3a is close to 97 km/h, while that recorded 

by the telemetry equipment is 92 km/h. These differences could be caused, not only by the 

equipment, but also by external factors such as human error, or the vehicle's limitations to 

follow the proposed speed profile, which is associated with limitations in its acceleration 

capability. These limitations in acceleration are evident in the last phase, called extra high 

speed, where the speed differences presented by the telemetry equipment (115 km/h) and the 

driving cycle (131 km/h) are higher. 

 

An overall similarity assessment between the telemetry equipment speed data and the WLTC 

3a speed data is performed through the coefficient of determination R2. The obtained results 

indicate that when the vehicle follows the WLTC 3a driving cycle, the speed recorded by the 

telemetry equipment is similar to the real speed of the vehicle, which is evidenced with a 

coefficient of determination (R2) greater than 97%. 
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Figure 7.3 Comparison between the speed register by the equipment and the driving cycle 

data 

 

 

Furthermore, the results of the fuel mass tests indicate that in 26 of the 27 tests carried out, 

the values delivered by the equipment are greater than those measured under the gravimetric 

method. Only in the test at a constant speed of 30 km/h during the vehicle warm-up period, 

higher fuel consumption was measured in the gravimetric test. On average, the difference 

between the values delivered by the equipment is 9.74% greater than those measured through 

the gravimetric test. The results of the tests carried out are presented in Table 7.5 

 

 

 
Figure 7.4 Coefficient of determination analysis between the telemetry equipment and 

gravimetric test results
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Table 7.6 Comparison between the fuel consumption reported by the telemetry equipment respect to gravimetric test results 

Conditions of the driving test Test  Gravimetric [g] Telemetry equipment [g] Reltive difference  

Constant speed on a chassis dynamometer 

30 km/h -1 (Warm-up phase) 373.00 261.41 30% 

30 km/h -2 193.90 204.56 5% 

30 km/h -3 184.20 194.95 6% 

30 km/h -4 164.30 189.49 15% 

30 km/h -5 190.30 198.82 4% 

50 km/h -1 231.40 255.04 10% 

50 km/h -2 235.90 248.31 5% 

50 km/h -3 206.20 235.51 14% 

50 km/h -4 205.80 221.45 8% 

70 km/h -1 264.00 303.46 15% 

70 km/h -2 249.20 299.94 20% 

70 km/h -3 248.10 282.65 14% 

70 km/h -4 245.40 284.25 16% 

Random speed and acceleration change tests on 

dynamometer 

Random 1 195.20 204.74 5% 

Random 2 171.60 168.85 2% 

Random 3 176.60 175.45 1% 

Random 4 201.50 195.54 3% 

Tests under real driving conditions 

Rotonda Condina (route 1) 1520.00 1309.67 14% 

Circunvalar y terminal (route 2) 1070.00 883.69 17% 

Av. Sur - San Fernado - Av. 30 de Agosto (route 3) 1550.00 1431.75 8% 

Circunvalar Pinares Terminal (route 4) 910.00 755.79 17% 

Test under idling conditions 
Idling during 30 min 380.00 357.66 6% 

Idling during 60 min 730.00 772.60 6% 

Test using driving cycle on a chassis 

dynamometer 

WLTC 3a long 1466.00 1563.94 7% 

WLTC 3a short 1 588.75 542.43 8% 

WLTC 3a short 2 614.80 590.41 4% 

WLTC 3a short 3 551.80 570.83 3% 
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The analysis through the calculation of the coefficient of determination R2 presented a result 

of 98.56%, which indicates that the values delivered by the telemetry equipment are similar 

to the values measured under the gravimetric method. This means that having only the data 

delivered by the telemetry device and applying the regression model presented in the equation 

in Figure 7.4, we could accurately calculate the real fuel consumption values. The results of 

the coefficient of determination R2 are presented in Figure 7.4. Likewise, we observe that the 

slope of the regression model proposed is equal to 0.9251, which indicates that the values 

registered with the telemetry equipment are greater than those measured under the 

gravimetric test. However, the adjustment in order of magnitude is not drastic. 

 

After determining the reliability and truthfulness of the fuel consumption data provided by 

telemetry equipment, we used the trips monitored under real driving conditions to construct 

a local driving cycle using the Energy Based Micro-trip (EBMT) method. As explained in 

chapter 4 (Driving cycles that reproduce driving patterns, energy consumptions and tailpipe 

emissions), the EBMT method constructs a driving cycle using the micro-trips approach, and 

assessment criteria such as energy consumption and characteristic parameters calculated 

from the speed time data.  

 

Then, the first step is to define the main characteristic parameters that will join the energy 

consumption on the list of the assessment criteria. We followed the procedure explained in 

chapter 5 (Main characteristic parameters to describe driving patterns). Nineteen 

characteristic parameters (CPs) that describe the driving patterns of the region were used to 

propose 153 sets of assessment criteria consisting of two elements. Table 7.6 presents the 

CPs evaluated on this step. 

 

 

Table 7.7 Characteristic parameters used to describe driving patterns. 

Type of 

parameter 

Characteristic Parameters (CPs) 

Name Symbol Units 

Speed 

Maximum speed Max Speed m/s 

Average speed Ave Speed m/s 

Standard deviation of speed SD Speed m/s 

Acceleration 

Maximum acceleration Max Accel m/s2 

Maximum deceleration Max Decel m/s2 

Average acceleration Ave Accel m/s2 

Average deceleration Ave Decel m/s2 

Standard deviation of 

acceleration 
SD Accel m/s2 

Standard deviation of 

deceleration 
SD Decel m/s2 

Operational 

modes  

(% of time) 

  

Idling % Idling % 

Acceleration % Accel % 

Deceleration % Decel % 
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Cruising % Cruise % 

Dynamics 

Number of accelerations per 

km  
Accel/km km-1 

Root mean square of 

acceleration 
RMS  m2/s2 

Positive kinetic energy PKE m/s2 

Speed-acceleration 

probability distribution   
SAPD 

- 

Vehicle specific power VSP kW/ton 

Kinetic intensity KI 1/m 

Energy 

consumption  
Specific fuel consumption SFC l/km 

 

 

Due to the stochastic nature of the micro-trips’ method, five hundred driving cycles were 

constructed using each set of assessment criteria. Then, as was explained in chapter 5, the 

𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and the 𝐼𝑄𝑅̅̅ ̅̅ ̅  of the CPs, as well as the average relative difference of the specific fuel 

consumption (ARD SFC) were calculated. Table 7.7 shows the 20 first set of assessment 

criteria which present the lowest values of 𝐴𝑅𝐷̅̅ ̅̅ ̅̅ . 

 

Table 7.8 Sets of assessment criteria with lowest values of 𝐴𝑅𝐷̅̅ ̅̅ ̅̅ . 

CP1 CP2 Ave_ARD Ave_IQR ARD SFC 

Ave Speed SD Speed 6.48 6.52 4.59 

Ave Speed Max Decel 6.99 7.08 4.46 

Ave Speed SD Accel 7.05 6.37 4.55 

Ave Speed %_idling 6.74 6.92 5.82 

Ave Speed %_Cruise 6.59 6.51 3.89 

Ave Speed RMS 6.31 5.50 4.92 

Ave Speed PKE 6.73 6.45 3.66 

Ave Speed KI 6.41 5.77 3.35 

SD Speed %_idling 6.26 5.41 4.98 

SD Speed %_Cruise 6.80 7.12 4.99 

SD Speed VSP 6.25 5.89 3.93 

Max Decel VSP 6.96 7.16 4.19 

SD Accel VSP 6.87 6.01 4.57 
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CP1 CP2 Ave_ARD Ave_IQR ARD SFC 

%_idling VSP 6.12 5.18 5.22 

%_idling KI 5.87 5.56 4.15 

%_Cruise VSP 6.44 5.70 3.91 

%_Cruise KI 6.75 7.02 5.53 

RMS VSP 6.22 5.52 4.66 

PKE VSP 6.65 6.58 3.56 

VSP KI 6.57 5.79 3.40 

 

 

From Table 7.7 we identified that CPs with the highest frequency are average speed and VSP 

(both with 8 times), followed by the kinetic intensity, standard deviation of speed, % of time 

in idling, and % of time in cruise (4 times). From these results we decided to apply the EBMT 

method using as assessment criteria the Average Speed, the VSP, and the fuel consumption. 

Moreover, we decided to add to the criteria the percentage of time in idling since the micro-

trips approach does not reproduce well this externality of the driving patterns.  

 

Once the main assessment criteria of the EBMT method are identified, the next step is to 

define the time duration of the local driving cycle. The methodology to identify is explained 

on chapter 6 (Chapter 6 - Relationship between the time duration of a driving cycle and its 

representativeness result). We have analyzed the following time durations: 5, 10, 20, 30, 45, 

60, 90 and 120 minutes. The suitable time length of the driving cycle will best represent the 

driving patterns of the studied region. For each time duration we built 500 driving cycles and 

then the 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and the 𝐼𝑄𝑅̅̅ ̅̅ ̅  of the CPs were computed. The results for different time durations 

are showed in Figure 7.5 and Table 7.8 

 

 
Figure 7.5 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and the 𝐼𝑄𝑅̅̅ ̅̅ ̅  of the CPs for different time lengths of driving cycles 
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Table 7.9 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and the 𝐼𝑄𝑅̅̅ ̅̅ ̅  number results for different time lengths of driving cycles 

 

Time length 

(Minutes) 
Ave_ARD Ave_IQR 

5 16.80 11.47 

10 7.60 7.27 

20 5.78 5.14 

30 5.23 4.56 

45 4.82 4.83 

60 4.66 4.57 

90 4.59 4.31 

120 4.77 4.07 

 

 

From Figure 7.5 and Table 7.8 we observe that when the time duration of the driving cycle 

increases, the 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  and the 𝐼𝑄𝑅̅̅ ̅̅ ̅  of the CPs decrease. For driving cycles with time lengths of 

5 minutes the 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  is 16.80% while for driving cycles with time lengths of 120 minutes the 

𝐴𝑅𝐷̅̅ ̅̅ ̅̅  is 4.77%. Moreover, we observe that driving cycles with time lengths equal or higher 

than 20 minutes, the 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  tends to stabilize between 4.5% and 6%. Then, from these results 

we select as time length for driving cycles a value of 20 minutes.  

 

At this point we have set-up the requirements to construct the local driving cycle through the 

EBMT. We defined the main assessment criteria to evaluate the proposed driving cycles 

(Average speed, VSP, % of time in idling, and specific fuel consumption). Also, we 

established the time duration of the driving cycle in 20 minutes. Due to the stochastic 

approach of the EBMT, we built 500 driving cycles. Then, we calculated the 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  of the 

characteristic parameters for each driving cycle and we selected the driving cycles with 

lowest values of 𝐴𝑅𝐷̅̅ ̅̅ ̅̅ . The values for the 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  of the characteristic parameters range between 

3.525% and 12.53%. Table 7.9 presents the characteristic parameters for the driving patterns 

and for the first five driving cycle with the lowest values of 𝐴𝑅𝐷̅̅ ̅̅ ̅̅ . Figure 7.6 presents the 

speed-time profile of the selected driving cycles.  

 

The proposed local driving cycles developed by the EBMT presented characteristic 

parameters that are close to the ones of the driving patterns. Any of these driving cycles 

represents the driving patterns of the study region. The next step, out of the scope of this 

work, is to validate if a light-duty vehicle driven under this driving cycle is able to follow the 

speed profile and the proposed accelerations. Likewise, to calculate the fuel consumed by the 

vehicle in the execution of the driving cycle. 
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Table 7.10 Characteristic parameters of the five local driving cycles and driving patterns  

 

Cycle No. 83 196 277 308 371 Driving  Patterns 

Time [s] 1294 1211 1201 1312 1204 2694 (Average) 

Distance [m] 7209 6850 6634 7296 6721 15545 (Average) 

Max Speed 15.83 15.83 15.28 15.83 15.83 16.81 

Ave Speed 5.57 5.66 5.52 5.56 5.58 5.57 

SD Speed 4.69 4.57 4.71 4.79 4.48 4.69 

Max Accel 1.83 1.81 1.83 1.81 1.81 1.90 

Max Decel -1.78 -1.78 -1.94 -1.94 -1.78 -1.93 

Ave Accel 0.50 0.49 0.52 0.50 0.50 0.50 

Ave Decel -0.55 -0.54 -0.56 -0.52 -0.54 -0.54 

SD Accel 0.29 0.31 0.31 0.30 0.30 0.31 

SD Decel 0.36 0.35 0.35 0.38 0.36 0.34 

% Idling 24.27 24.53 24.56 24.77 25.50 24.71 

% Accel 30.14 29.89 29.14 28.96 29.32 27.01 

% Decel 27.05 27.17 27.56 27.74 27.24 25.37 

% Cruise 18.55 18.41 18.73 18.52 17.94 17.40 

Accel / km 16.65 15.77 15.68 16.59 16.37 16.80 

RMS 0.47 0.46 0.48 0.46 0.46 0.45 

PKE 0.37 0.36 0.37 0.37 0.36 0.38 

VSP 1.03 1.04 1.02 1.04 1.01 1.04 

KI 1.85 1.87 1.85 1.75 1.91 1.90 

SFC 0.11 0.12 0.11 0.11 0.12 0.12 
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Figure 7.6 Five driving cycles proposed for Pereira  

 

 

7.4 Conclusions 

This study presents the development of a telemetry equipment that registers the location of 

the vehicle, its longitudinal speed, engine speed, intake manifold pressure, inlet air 

temperature, percentage of engine load, the mass flow of air and the mass flow of fuel. The 

equipment was designed to record the mentioned variables with a frequency of 1 Hz. 
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The equipment available on the market for fleet monitoring do not operate with the required 

sampling frequency or have restrictions on access to information on their platforms. An on-

board diagnosis (OBD) device, a neo6mv2 geolocation sensor, a Raspberry PI3B + data 

storage and management system, and a Huawei e303 USB transmission system was 

integrated into the developed telemetry equipment. This equipment was developed to monitor 

the operation of a fleet of vehicles under real driving conditions, and record speed and fuel 

consumption data that serve as input for the development of local driving cycles under the 

Energy-based micro-trip (EBMT) method. 

 

To validate the speed and fuel consumption data recorded by the telemetry equipment, it was 

installed on a light passenger vehicle. The instrumented vehicle was tested on different 

operating conditions that included tests at different constant speeds, tests at idling, tests with 

random speeds and accelerations, and tests on a dynamometer following a driving cycle. The 

obtained results indicate that when the vehicle follows the WLTC 3a driving cycle, the speed 

recorded by the telemetry equipment is similar to the real speed of the vehicle, which is 

evidenced with a coefficient of determination (R2) greater than 96%. To validate the energy 

consumption readings, the fuel mass values delivered by the equipment were compared with 

those measured by gravimetric test for the same set of trips. For this comparison, the 

coefficient of determination R2 presented a result of 98.56%, which indicates that the values 

delivered by the telemetry equipment are similar to the values measured under the 

gravimetric method. However, the positive results in this phase of the project must be 

validated in other vehicles from automaker and models, and with different motorization 

technologies. 

 

The trips data monitored under real driving conditions were used to construct a local driving 

cycle using the EBMT method. Then, following the procedure explained in chapter 5 and 6, 

we identified the average speed, VSP, % of time in idling and specific fuel consumption as 

the assessment criteria for evaluating the proposed driving cycles. Also, we established that 

the time duration of the driving cycle might be 20 min  2min. Finally, these results were 

used to construct 500 driving cycles and the first with the lowest values of 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  are presented. 

Theoretically, these driving cycles best represent the driving patterns and the energy 

consumption of the study region. Nevertheless, the proposed driving cycles must be 

evaluated on a chassis dynamometer test in order to validate if a driven light-duty vehicle is 

able to follow the speed profile and the proposed accelerations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
126 

8 General discussion 

The energy and technological model of the road transport sector presents high consumption 

of energy resources, as well as direct impacts on climate change and air quality. In this sense, 

understanding and optimizing the operation of vehicles under real driving conditions is 

essential to reduce emissions and energy consumption of the vehicle fleet. 

 

Local driving cycles are tools to describe and analyze the driving patterns of a region. Local 

driving cycles are used for different purposes such as optimization of the powertrain of 

vehicles, the generation of fuel consumption values and emission factors to establish accurate 

emission inventories adjusted to the realities of the study regions. The use of local driving 

cycles also allows reducing the existing difference between the fuel consumption perceived 

by users and the one reported by vehicle manufacturers from the type approval tests. The 

state of the art of indicates that this difference can vary between 9% and 60% depending on 

the model year and the vehicle technology.  

 

Therefore, there is a need not only to use local driving cycles but also to improve their level 

of representativeness. This means to increase their capacity to express the driving patterns of 

a region. The construction process of a local driving cycle requires the following steps: (i) to 

collect a large amount of operational data from a fleet of vehicles, (ii) to select a method for 

constructing the driving cycle, and (iii) to evaluate the representativeness of the proposed 

driving cycle. We identified that the methods for the construction of driving cycles can be 

categorized in stochastic and deterministic methods. Micro-trips (MT) and Monte Carlo 

Markov Chains (MCMC) are part of the analyzed stochastic method whereas the Trip-based 

is the deterministic method analyzed. Usually, the representativeness of the driving cycles 

generated by the mentioned methods is measured using metrics associated with the 

kinematics of the vehicle which are defined as characteristic parameters (CP). There is no 

unique set of CPs to assess the representativeness of a driving cycle. The selection of the CPs 

is based on the experience of the researcher and according to the study region. However, after 

analyzing the main driving cycles developed in the world, it is concluded the most used CPs 

are the average speed and the percentage of time idling. This review of the state of art also 

identified the absence of a method to define the suitable time duration of the local driving 

cycles. 

 

We concluded that the current process to construct local driving cycles seeks to assure the 

representativeness in terms of driving patterns. However, this process does not guarantee the 

similarity in terms of energy consumption and vehicle emissions. This research redefine the 

concept of a driving cycle as a time series of speed that represents the driving patterns of a 

region, and reproduce the energy consumption and the emissions of all vehicles with the same 

technology driven in the study region. To support this new concept, this project develops a 

methodology to construct local driving cycles based on fuel consumption and emissions. 

 

For the development of the methodology proposed by this research project, a database was 

provided by Energy and Climate Change research group of Tecnológico de Monterrey. This 

database contains the information of the vehicle trips made in 8 months by a fleet of 15 buses 

that traveled in the TOL-MEX route that connects Mexico City with the city of Toluca. The 

route contains two flat urban regions with different traffic conditions, and one sub-urban 
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region with mountainous topography. In this database we can find trips with data of speed, 

fuel consumption and CO2, CO and NOx emissions, and with sample frequency of 1 Hz.  

 

The initial step of this research project was to propose a deterministic method in which the 

trip with the closest fuel consumption to the average fuel consumption of the sampled trips, 

is selected as the driving cycle. We defined this repeatable and reproducible method the Fuel-

based (FB) method. We hypothesized that using the FB method, the proposed driving cycle 

represents the driving patterns of a given region. This means that the characteristic 

parameters of the driving cycle (CP*s) are the same or similar to the characteristic parameters 

of the driving patterns (CPs). The level of similarity was measured in terms of the relative 

difference between CPs and CP*s. For flat regions, we obtained relative differences results 

below than 15% for CPs related with speed and acceleration, which are directly influenced 

by the driver. These results confirmed our hypotheses. However, the percentage of time in 

idling presented the highest relative difference since it is considered as an external factor, 

which in the case of the mountain region reaches up to 80% of relative difference.  

 

The performance of the FB method had to be validated. For this reason, in the second step of 

this project research the FB method is compared with the MT and MCMC methods. In the 

three methods, their capability to construct local driving cycles was measured in terms of (i) 

representing the driving patterns, and (ii) reproducing the fuel consumption and emissions 

generated by a vehicle in the study region. The comparison of the three methods was 

performed based on 23 CPs used previously by different researchers in the construction of 

driving cycles. It is not possible to make a direct comparison between the CP*s of a driving 

cycle generated by the FB method and the CP* of the driving cycles generated by the MT or 

MCMC methods, due to their stochastic nature. This means that the driving cycles proposed 

by MT and MCMC, change every time the methods are applied. For this reason, the MT and 

MCMC methods were applied 1000 times, reporting the trend of the CPs through the average 

relative difference (ARD) and their dispersion through the inter-quartile range (IQR). The 

results indicated that in the four regions analyzed, 83% of the CPs obtained with the FB 

method presented an ARD below 10%, while the MT method and the MCMC method 

presented 69% and 20% of the CPs with ARD below 10%, respectively. We concluded that 

the FB method presented the best results to represent the driving patterns, and to reproduce 

the fuel consumption of the study regions. The MT and the FB methods presented the best 

performance of the three analyzed methods. However, the FB method, as a deterministic 

method, can generate too long driving cycles to be implemented in a type approval test, or 

too short to represent the driving patterns of the studied region. Under this situation, the MT 

has opportunities for improving and to represent the fuel consumption and vehicle emissions 

of the study region. In this step we also proposed a methodology to evaluate the 

representativeness of a driving cycle developed by stochastic methods, which is based on the 

calculation of the average relative difference (ARD) and the inter-quartile range (IQR). These 

indicators were used in the subsequent analyzes of this investigation. 

 

To improve the representativeness of the driving cycles obtained by the MT method, we 

proposed to implement as the assessment criteria the energy consumption and a set of CPs, 

specifically the average speed and the percentage of time in idling. These two CPs were 

selected because they have been the most used by other researchers in the development of 

driving cycles. This proposal was denominated as the Energy-Based Micro-trip (EBMT) 

method. The EBMT method differs from the traditional MT method by its ability to represent 
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local driving patterns, and simultaneously reproduce energy consumption and tailpipe 

emissions. The driving cycles proposed by the EBMT method were compared with the cycles 

generated using three reference cases: i) Average speed and percentage of time in idling 

(traditional MT method), ii) specific fuel consumption (SFC), and iii) Average speed and 

percentage of downtime, SFC and CO, CO2 and NOx emission. The performance of EBMT 

method and reference cases were calculated based on the fuel consumption ARD (𝐴𝑅𝐷𝑆𝐹𝐶),  

the average ARD of the CPs (𝐴𝑅𝐷̅̅ ̅̅ ̅̅ ̅
𝐶𝑃𝑠), and the average ARD of emissions (𝐴𝑅𝐷̅̅ ̅̅ ̅̅

𝐸𝐼𝑠). The 

driving cycles constructed by the EBMT method represents the driving patterns with 𝐴𝑅𝐷̅̅ ̅̅ ̅̅
𝐶𝑃𝑠 

< 7.66% and reproduce energy consumptions with 𝐴𝑅𝐷𝑆𝐹𝐶 < 2.69% and tailpipe emissions 

with 𝐴𝑅𝐷̅̅ ̅̅ ̅̅
𝐸𝐼𝑠 < 5.36%. The traditional MT method showed 𝐴𝑅𝐷𝐶𝑃𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 8.85%, 𝐴𝑅𝐷𝑆𝐹𝐶 < 

9.64%, and 𝐴𝑅𝐷̅̅ ̅̅ ̅̅
𝐸𝐼𝑠 < 9.81%. The benefits in terms of representativeness are evident when 

using EBMT instead MT when constructing local driving cycles 

 

We found that there are different sets of CPs used to assess the representativeness of the 

driving cycles. However, it is unknown which is the set of CPs that generate driving cycles 

with the best level of representativeness. This problem was addressed in this phase of the 

research project. Then, nine-teen CPs were used to build 1140 sets of 2 and 3 CPs. We 

observed that idling time, the standard deviation of the positive acceleration, and average 

speed were the most recurrent CPs. Therefore, we concluded that they are the ones that must 

be included in the MT method as assessment parameters to obtain DCs that represent the 

driving pattern and that reproduce the real energy consumption and tailpipe emission of the 

vehicles. This result agrees with the fact that average speed and the percentage of idling time 

are the CPs most frequently used by researchers for constructing DC. This work also shows 

that a third CP (the standard deviation of the positive acceleration) should be included. 

Alternatively, kinetic intensity or vehicle specific power can be used for the same purpose. 

 

During the development of the research, we identified that the time duration of the driving 

cycle is an additional factor that impacts its representativeness. This factor has not been 

studied in-depth since in most cases the driving cycle time duration is established by the 

researchers based on their experience and vehicle traffic data. The time duration of each 

driving cycle is unique due to its direct relation to the local operating conditions of the 

vehicles. A time duration for the DC must be defined to allow the vehicle operation under its 

normal operating temperature and to properly represent the local driving pattern, the energy 

consumption and the vehicle emissions. To understand how the time duration of the driving 

cycle affects its representativeness results we took a first approach building DCs with a time 

durations of 5, 10, 15, 20, 25, 30, 45, 60 and 120 minutes using the MT method. We found a 

direct relation between the time duration of driving cycle and its capability to represent the 

local driving patterns and to reproduce the energy consumption and emissions. In the study 

regions we observed that DCs with short time duration (less than 10 minutes) presented 

higher values of  𝐴𝑅𝐷̅̅ ̅̅ ̅̅
𝐶𝑃𝑠 than long DCs with time duration above 30 to 45 minutes. The 

𝐴𝑅𝐷̅̅ ̅̅ ̅̅
𝐸𝐼𝑠 showed the same tend to decrease when the driving cycle time duration increases. 

This analysis could be used as a methodology to define the suitable time duration of a driving 

cycle for a specific region.  

 

At the end of this research, a complementary work was carried out focused on the 

development of a telemetry equipment to record the fuel consumption, speed and operating 

time of a vehicle under real driving conditions with a sampling frequency of 1 Hz. Design 

requirements of this telemetry equipment respond to the needs to develop local driving cycles 
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using the EBMT method. Alternatively, the operation database could be used to carry out 

different studies in eco-driving, the identification of traffic spots, the design of alternatives 

powertrains, among other research related to the vehicle energy efficiency. Nowadays, on 

the market we can find devices with the ability to monitor vehicle fleets remotely. However, 

the focus of these devices is the control and logistics of the fleets, and not for determining 

the energy and environmental impact of the vehicles. Additionally, it should be mentioned 

that there is no universal device that can be used in all types of vehicles. We found restrictions 

in the geometry of the connection port, and in the language of communication with the 

vehicle, and restrictions in the variables that can be delivered by the car. In the development 

of the telemetry equipment, an OBD device, a Raspberry PI 3B + card and a Huawei e303 

transmission system were integrated. To validate the speed and fuel consumption data 

recorded by the telemetry equipment, it was installed on a light passenger vehicle. The 

instrumented vehicle was tested on different operating conditions that included tests at 

different constant speeds, tests at idling, tests with random speeds and accelerations, and tests 

on a dynamometer following a driving cycle. The recorded speed and fuel consumption were 

compared respect WTLC 3a speed data and fuel gravimetric test, achieving in both cases 

coefficients of determination R2 above 97%. These results indicate that the values delivered 

by the telemetry equipment are similar to the real readings.  

 

A first approach to implement the EBMT method were proposed using the trips data 

monitored under real driving conditions. We used as assessment criteria the average speed, 

VSP, % of time in idling and specific fuel consumption and the time duration of the driving 

cycle on 20 min  2min. Due to the stochastic nature of the EBMT method, we constructed 

500 driving cycles, and the ones with the lowest values of 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  were selected. However, the 

proposed driving cycles must be evaluated on a chassis dynamometer in order to validate if 

a driven light-duty vehicle is able to follow the speed profile and the proposed accelerations. 

 

Further work is required to expand the applicability of the acquired outputs and the EBMT 

method in different regions with different traffic conditions, with relevant variations in 

altitude, and with different and heterogenous types of vehicle technology, including hybrid 

and electric vehicles. On the other hand, despite the good results obtained in the development 

of the telemetry equipment, it is required to continue with the validation tests of the 

equipment. Then, it is recommended to install it in a medium to large size vehicle fleet in 

order to establish a data management process. Moreover, as an opportunity to expand the 

research in driving cycles, we recommend analyzing how to integrate mathematical data 

analysis techniques such as wavelets. We consider that this type of analysis could help to 

understand the changes in the driving patterns at local level and their relationship with the 

driving behavior and with traffic externalities.  
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Figure 8.1 Methodology and main outputs of the thesis by chapter
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