EFECTO DEL TRATAMIENTO TERMICO EN LA RESISTENCIA A LA CORROSION DE LA ALEACION COBRE- BERILIO C17200

GERLIER GALLEGO OCAMPO
CÓDIGO: 1112779351

UNIVERSIDAD TECNOLÓGICA DE PEREIRA
FACULTAD DE INGENIERÍA MECÁNICA
PEREIRA
2018
INFLUENCIA DEL TRATAMIENTO TERMICO EN EL
COMPORTAMIENTO A LA CORROSION DE LA ALEACION COBRE-BERILIO C17200

GERLIER GALLEGO OCAMPO
CÓDIGO: 1112779351

Trabajo investigativo

Director:
JOSE LUIS TRISTANCHO REYES, M. Sc, Ph.D.

UNIVERSIDAD TECNOLÓGICA DE PEREIRA
FACULTAD DE INGENIERÍA MECÁNICA
PEREIRA
2018
Pereira ___ de octubre de 2018
Nota de aceptación:

Firma del director del proyecto

Firma del jurado
AGRADECIMIENTOS.

Primero que todo le debo dar gracias a Dios y a la virgen por permitirme alcanzar mis metas, a mi madre que con sus consejos, cuidados y enseñanzas me han formado como una persona íntegra que lucha cada día por ser mejor, a mi abuela que siempre ha sido un apoyo incondicional preocupándose por mí y brindándome lo mejor de ella, continuando su gran labor de madre conmigo, mis dos hermanas que me aportaron sus sonrisas y creatividad permitiéndome ver el mundo de diversas perspectivas, a mi padre enseñándome que no existen limitaciones que todo lo que uno se propone es posible puesto que las únicas barreras que existen son las mentales, a mi novia que con su hermosa forma de ser me apoyado en este proceso, también quiero agradecerle a todos mis familiares que de una u otra forma me han apoyado en este hermoso proceso.

Finalmente quiero expresarle mi más grande agradecimiento a mi director de trabajo de grado el doctor José Luis Tristancho Reyes por brindarme la oportunidad de nutrirme de sus conocimientos, amistad enseñándome que lo que hace realmente grande a una persona no es su conocimiento, si no su actitud hacia los demás.
Tabla de contenido
INTRODUCCIÓN .. 9
1 CAPÍTULO FUNDAMENTOS DEL PROCESO DE CORROSIÓN Y ALEACION COBRE BERILIO C17200. .. 12
 1.1 DEFINICIÓN Y CLASIFICACIÓN DE LOS TIPOS DE CORROSIÓN................................. 12
 1.2 TECNICAS ELECTROQUIMICAS ... 14
 1.2.1 POTENCIAL DE ELECTRODO ... 15
 1.2.2 CURVAS DE POLARIZACIÓN Ó EXTRAPOLACIÓN DE TAFEL .. 15
 1.2.3 Resistencia a la Polarización Lineal (RPL) ... 16
 1.2.4 VELOCIDAD DE CORROSIÓN .. 17
2 METODOLOGIA .. 18
 2.1 REVISION BIBLIOGRAFICA... 18
 2.2 MATERIALES Y EQUIPOS .. 19
 2.2.1 ELECTRODOS DE TRABAJO .. 19
 2.2.2 ELECTRODOS DE REFERENCIA Y CONTRAELECTRODO .. 19
 2.2.3 AGENTE CORROSIVO .. 19
 2.2.4 HORNO ... 19
 2.2.5 CELDA DE PRUEBA ... 20
 2.3 EQUIPO PARA ENSAYOS ELECTROQUÍMICOS ... 20
 2.4 .. 21
 2.5 TRATAMIENTO TÉRMICO A LAS PROBETAS. ... 21
 2.5 MEDICIONES ELECTROQUÍMICAS .. 22
 2.5.1 CÁLCULO DEL AREA EN cm\(^{2}\) .. 23
 2.5.2 CÁLCULO DEL PESO EQUIVALENTE .. 24
 2.5.3 LA DENSIDAD .. 25
 2.5.4 Resistencia a la polarización lineal (RPL) ... 25
 2.5.5 Espectroscopia de Impedancia Electroquímica (EIE) ... 25
3. RESULTADOS Y ANALISIS .. 26
 3.1 CARACTERIZACIÓN DEL MATERIAL BASE ... 26
 3.2 CURVAS DE POLARIZACIÓN Ó EXTRAPOLACIÓN DE TAFEL 27
 3.3 RESISTENCIA A LA POLARIZACIÓN LINEAL (RPL) .. 31
4 CONCLUSIONES.. 37
5 BIBLIOGRAFIA... 38
INDICE DE TABLAS.

TABLA 1. Tipos de corrosión...12
TABLA 2. tratamiento térmico de las probetas de cobre berilio C17200............20
TABLA 3 composición química de la aleación cobre berilio C17200................22
TABLA 4 Datos obtenidos de la tabla periódica..22
TABLA 5 Valores de las constantes de Tafel anódica (β_a), catódica (β_c) y constante de Stern – Geary (β) a 0 horas...28
TABLA 6 Valores de las constantes de Tafel anódica (β_a), catódica (β_c) y constante de Stern – Geary (β) a 24 horas...29
TABLA 7 Valores de las constantes de Tafel anódica (β_a), catódica (β_c) y constante de Stern – Geary (β) a 48 horas...30
TABLA 8 Valores de Resistencia a la Transferencia de Carga (R_{tc}), Corriente de Corrosión (I_{corr}) y Velocidad de Corrosión (V_{corr}) a las 0 Horas ..32
TABLA 9 Valores de Resistencia a la Transferencia de Carga (R_{tc}), Corriente de Corrosión (I_{corr}) y Velocidad de Corrosión (V_{corr}) a las 24 Horas..33
TABLA 10 Valores de Resistencia a la Transferencia de Carga (R_{tc}), Corriente de Corrosión (I_{corr}) y Velocidad de Corrosión (V_{corr}) a las 48 Horas..33
INDICE DE FIGURAS

FIGURA 1. Clasificación de los tipos de corrosión. 14
FIGURA 2 Diagrama de tafel. .. 15
FIGURA 3 Diagrama de Resistencia a la Polarización. 16
FIGURA 4 Dimensiones de la probeta. ... 19
FIGURA 5 . Alambre de platino de alta pureza y grafito. 19
FIGURA 6 Horno modelo ES industrias terrígeno. 20
FIGURA 7 Celda de prueba. ... 20
FIGURA 8 Potenciostato-Galvanostato PG-TEKCORR 4.2 USB. 21
FIGURA 9 conexiones con el equipo electroquímico. 23
FIGURA 10 parámetros requeridos por el software 23
FIGURA 11 Empaque de caucho diámetro interno 24
FIGURA 12 TABLA PERIODICA... 25
FIGURA 13 Micrografía cobre berilio C17200 26
FIGURA 14 Curva de polarización aleación cobre berilio C17200 muestra N800 .. 27
FIGURA 15 Curva de polarización aleación cobre berilio C17200 muestra T750E1H .. 27
FIGURA 16 Curva de polarización aleación cobre berilio C17200 muestra T800E3 .. 28
FIGURA 17 Curva de polarización aleación cobre berilio C17200 muestra Estado de suministro .. 28
figura 18 Diagrama de Resistencia a la Polarización Lineal probeta N750 .. 28
figura 19 Diagrama de Resistencia a la Polarización Lineal probeta N800 .. 31
figura 20 Diagrama de Resistencia a la Polarización Lineal probeta T800E2H .. 32
figura 21 Diagrama de Resistencia a la Polarización Lineal probeta T850E3H .. 33
figura 22 Diagrama de barras de la velocidad de corrosión vs el período de exposición de cada una de las probetas analizadas. 35
La aleación cobre de berilio CuBe2--C17200 (CDA 172) es la aleación de cobre berilio más comúnmente utilizada y destaca por su mayor resistencia y dureza en comparación con las aleaciones de cobre comerciales. C17200 aleación contiene aprox. 2% de berilio y alcanza su última resistencia a la tracción puede superar los 200 ksi, mientras aproxima la dureza Rockwell C45. Mientras tanto, la conductividad eléctrica es un mínimo de 22% por sus excelentes propiedades mecánicas y gran resistencia a la corrosión se usa para fabricar muelles, moldes para plásticos, electrodos para soldar por resistencia y herramientas antideflagrantes para mejorar diversos aspectos de esta aleación se le realizan diversos tratamientos térmicos (ASM Handbook volume 2, 1991).

El temple es un tratamiento térmico en el cual la aleación se lleva a temperatura de solubilización se mantiene la temperatura hasta que se encuentra totalmente homogeneizada después se realiza un enfriamiento brusco puede ser con agua, salmuera o aceite el temple aumenta la dureza del material (S. Merino Andrés, 2002).

El recocado es un tratamiento térmico en el cual la aleación se lleva a temperatura de solubilización se mantiene la temperatura hasta que se encuentra totalmente homogeneizada de allí se expone al aire para que se enfrié lentamente (F. Berto, P. Lazzarin, 2014).

El envejecido es el endurecimiento por precipitación en cual se basa en los cambios de la solubilidad de sólido con la temperatura para producir partículas finas de una impureza fase, que impiden el desplazamiento de defectos o dislocaciones a través de la estructura cristalina dado que las dislocaciones son a menudo los operadores dominantes de la plasticidad esto sirve para endurecer el material en el caso de las aleaciones de cobre berilio El tratamiento de endurecimiento se hace normalmente entre 250ºC y 330ºC, para tiempos que varían entre 15 minutos y 4 horas, dependiendo de las características buscadas (S. Alisha, T. Venkateswaran 2015).

La corrosión, en general, se define como la destrucción lenta y progresiva de un metal por la acción de un agente exterior. Uno de los factores que limitan la vida de las piezas metálicas en servicio es el ataque químico o físicoquímico que sufren en el medio que les rodea para determinar el grado de corrosión de un material se usan técnicas electroquímicas la más usadas son la extrapolación de tafel y resistencia a la polarización lineal.

Teniendo en cuenta lo anterior se propone como objetivo general Evaluar la influencia del tratamiento térmico en el comportamiento a la corrosión
de la aleación cobre berilio C17200 mediante un ataque corrosivo de salmuera al 3.5 %, empleando las técnicas electroquímicas de resistencia a la polarización lineal (RPL) y extrapolación de tafel se plantean los siguientes objetivos específicos:

Determinar por medio de resistencia a la polarización lineal la cinética de corrosión de la aleación cobre berilio C17200 sometiéndola previamente a un tratamiento térmico.

Determinar la resistencia a la corrosión de la aleación cobre berilio C17200 después de un tratamiento térmico.

Evaluar la magnitud de la velocidad de corrosión de las diferentes probetas de aleación de cobre berilio C17200 al ser sometido en diferentes medios (agua y salmuera al 3,5% W) mediante resistencia a la polarización lineal y extrapolación de tafel.

Determinar el cambio de la metalografía de las diversas probetas de aleación cobre berilio C17200 al ser sometidas a tratamientos térmico.

En el capítulo 1 “FUNDAMENTOS DEL PROCESO DE CORROSION Y ALEACION COBRE BERILIO C17200.”, se realiza una revisión del estado del arte, en lo referente al fenómeno de corrosión, a las técnicas electroquímicas utilizadas en la evaluación de proceso corrosivo, propiedades de la aleación cobre berilio C17200, efecto de los tratamientos térmicos en libros, artículos publicados en revistas indexadas y no indexadas, internet y en memorias de congresos nacionales e internacionales.

En el capítulo 2 “METODOLOGÍA” se presenta la metodología experimental utilizada durante el desarrollo de la investigación haciendo énfasis en los siguientes aspectos:

Aplicación de los tratamientos térmicos.

Adecuación y calibración de equipos y de la celda electroquímica.

Selección de condiciones de ensayo.
Realización de pruebas en laboratorio.

En el capítulo 3 “RESULTADOS Y ANALÍSIS DE RESULTADOS” se presentan los resultados obtenidos durante el desarrollo de la presente investigación. Se reportan los valores de las densidades de corriente de corrosión (Icorr) y de las velocidades de corrosión (Vcorr), las micrografías obtenidas por el microscopio metalográfico y el respectivo análisis de los resultados obtenidos.

Las “CONCLUSIONES Y RECOMENDACIONES” se presentan en el capítulo 4 y estas se derivan de los resultados obtenidos.

En el capítulo 5 “BIBLIOGRAFÍA” se presenta las referencias bibliográficas consultadas y citadas en este trabajo.

Al final del documento se incluyen algunos anexos con información que se consideran de importancia.
1 CAPÍTULO FUNDAMENTOS DEL PROCESO DE CORROSION Y ALEACION COBRE BERILIO C17200.

La resistencia a la corrosión combinada con otras propiedades deseables, como la conductividad térmica y eléctrica, la facilidad de fabricación y el bajo costo, da como resultado su amplio uso comercial en dichas aplicaciones de entornos. La mezcla cobre con otro metal da como resultado excelentes propiedades de aleación de cobre que hacen que el cobre sea más importante. Aleaciones de cobre desarrolladas para aplicaciones altamente especializadas con características deseables en su composición (J. Brock Copper Alloys: Corrosion, 2001)

La aleación de cobre berilio presenta una mayor resistencia a la corrosión por picadura y descamación que el cobre puro y que el cobre estaño. los productos de corrosión en todos los materiales fueron Cu2O, CuCl y Cu2Cl (OH)(Decheng Kong, 2018)

la resistencia a la corrosión de la aleación de cobre berilio varía dependiendo del tratamiento térmico las Propiedades químicas(Metal handbook vol 2).

1.1 DEFINICIÓN Y CLASIFICACIÓN DE LOS TIPOS DE CORROSIÓN

La corrosión es la interacción de un metal con el medio que lo rodea, produciendo un deterioro en sus propiedades tanto físicas como químicas. Las características fundamentales de este fenómeno, es que sólo ocurre en presencia de un electrólito, ocasionando regiones plenamente identificadas, llamadas estas anólicas y catódicas: una reacción de oxidación es una reacción anódica, en la cual los electrones son liberados dirigiéndose a otras regiones catódicas.

En la región anódica se producirá la disolución del metal (corrosión) y, consecuentemente en la región catódica la inmunidad del metal. La velocidad a que un material se corroee es lenta y continua todo dependiendo del ambiente donde se encuentre, a medida que pasa el tiempo se va creando una capa fina de material en la superficie, que van formándose inicialmente como manchas hasta que llegan a aparecer imperfecciones en la superficie del metal. Este mecanismo que es analizado desde un punto de vista termodinámico electroquímico, indica que el metal tiende a retornar al estado primitivo o de mínima energía, siendo la corrosión por lo tanto la causante de grandes perjuicios económicos en instalaciones enterradas. Es por esto la importancia de tomar medidas de protección contra la corrosión. Dentro de las medidas utilizadas industrialmente para combatir la corrosión están las siguientes:
Uso de materiales de gran pureza.
Presencia de elementos de adición en aleaciones, ejemplo aceros inoxidables.
Tratamientos térmicos especiales para homogeneizar soluciones sólidas, como el alivio de tensiones.
Inhibidores que se adicionan a soluciones corrosivas para disminuir sus efectos, ejemplo los anticongelantes usados en radiadores de los automóviles.
Recubrimiento superficial: pinturas, capas de óxido, recubrimientos metálicos
Protección catódica.
A continuación, se representan en la tabla 1 y la figura 2 los criterios para distinguir los tipos de corrosión más frecuentes.

<table>
<thead>
<tr>
<th>Según el medio</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Química</td>
<td>El metal reacciona con un medio no iónico, por ejemplo la oxidación de un metal en aire a altas temperaturas.</td>
</tr>
<tr>
<td>Electroquímica</td>
<td>Ocurre transporte simultáneo de electricidad a través de un electrolito. Ejemplos: corrosión en soluciones salinas, agua de mar, atmósfera, suelos, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la forma</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosión uniforme</td>
<td>Es la forma más benigna. Consiste en un ataque homogéneo en toda la superficie. Existe igual penetración en todos los puntos. Se puede calcular la vida útil de los materiales expuestos.</td>
</tr>
<tr>
<td>Corrosión en placas</td>
<td>Caso intermedio entre uniforme y localizada. Ocurre un ataque general pero más extenso en algunas zonas</td>
</tr>
<tr>
<td>Corrosión por picado</td>
<td>Es una forma peligrosa. El ataque no es proporcional a la magnitud de los daños. El ataque se localiza en puntos aislados de superficies metálicas pasivas y se propaga al interior del metal. En ocasiones por túneles microscópicos. Provoca la perforación de cañerías o tanques.</td>
</tr>
<tr>
<td>Corrosión intergranular</td>
<td>Se propaga a lo largo de los límites de grano. Se extiende hasta inutilizar el material afectado.</td>
</tr>
<tr>
<td>Corrosión bajo tensión</td>
<td>Ocurre cuando el metal es sometido simultáneamente a un medio corrosivo y a tensión mecánica de tracción. Aparecen fisuras que se propagan al interior del metal hasta que se relajan o el metal se fractura.</td>
</tr>
</tbody>
</table>

TABLA 1. Tipos de corrosión

Fuente:
FIGURA 1. Clasificación de los tipos de corrosión.

Fuente: https://aleferrosas.webcindario.com/apartados/corrosion.html

1.2 TECNICAS ELECTROQUIMICAS
Los estudios de los fenómenos de involucrados en la reacción de corrosión y la evaluación de la velocidad de corrosión se han desarrollado en gran medida por la aplicación de técnicas de polarización, tales como la polarización potenciostática y la potenciocinámico. Este éxito parece lógico si se considera que los procesos involucrados son de naturaleza electroquímica.
Gracias a la ayuda de software y computadoras el uso de estas técnicas se ha vuelto rutinario puesto que permiten llevar de manera automática los experimentos y análisis.

1.2.1 POTENCIAL DE ELECTRODO

Para la medición del potencial de un electrodo o potencial de corrosión (E_{CORR}), se hace la medición de este con respecto a un electrodo de referencia dentro de un fluido de prueba (electrolito). El potencial que presenta el electrodo de referencia debe ser lo más estable posible y no presentar variaciones considerables con la temperatura, sus propiedades no deben cambiar con el tiempo, ni polarizarse con el paso de pequeñas corrientes. Esta prueba permite determinar el tiempo necesario para lograr la estabilización del sistema.

1.2.2 CURVAS DE POLARIZACIÓN ó EXTRAPOLACIÓN DE TAFEL.

El potencial de un metal, que se hace actuar como un electrodo en una celda electroquímica, además de poderse modificar en función del tiempo, cambia de la misma forma, en función de la densidad de corriente que se le aplique (procedimiento potenciostático). En el procedimiento galvánico se mantiene constante la densidad de corriente aplicada (Bilurbina, et al., 2003).

Para la obtención de curvas de polarización se aplica un barrido de potencial de menos a más 250 mV, con respecto al potencial de corrosión y se tienen en cuenta los datos derivados de la polarización anódica y catódica. El barrido de potencial se grafica en función del logaritmo de la densidad de corriente obtenida (E vs. Log i).

FIGURA 2 Diagrama de tafel.
en las curvas de polarización a altos valores de corriente se obtainen segmentos lineales, conocidos como regiones de tafel donde la corriente aplicada es igual a la diferencia de las corrientes de reducción y oxidación del proceso; aquí se determinan las pendientes anódica y catódica y la extrapolación de estos segmentos al potencial de corrosión permite hallar el valor de la densidad de corriente de corrosión (∆C). Las regiones de tafel son identificadas cerca de ±50 mv del potencial de corrosión.

corrosiones determinadas se compararon con las obtenidas por métodos no electroquímicos concluyendo que el método de extrapolación de Tafel es válido siempre y cuando se cumpla que: al menos una de las ramas de la curva de polarización este bajo control de activación; las regiones de Tafel anódica y catódica deben estar bien definidas y que los cambios en el potencial de electrodo no deben inducir reacciones electroquímicas adicionales ni en dirección anódica ni en dirección catódica.

1.2.3 Resistencia a la Polarización Lineal (RPL).
Es una de las técnicas de monitoreo continuo más comúnmente usadas en la determinación de la velocidad de corrosión y se puede definirse como la resistencia que ofrece un material a la oxidación durante la aplicación de un potencial externo. Presenta la ventaja de requerir solo la aplicación de pequeñas polarizaciones que no alteran la superficie del electrodo de trabajo (material de prueba). La resistencia a la polarización (Rp) se determina calculando la pendiente de la región lineal de la curva en el diagrama E vs i. figura 3.

![Diagrama de Resistencia a la Polarización](image)

FIGURA 3 Diagrama de Resistencia a la Polarización.
El ensayo consiste en la aplicación, mediante un potenciostato, de un potencial de ± 20 mV, alrededor del potencial de reposo con una velocidad de barrido de 0.1 mV/seg. y obtener una respuesta de corriente lineal con el voltaje (1999, Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM G – 102, EE.UU). Con la resistencia a la polarización (Rp) y las pendientes de Tafel obtenidas de las curvas de polarización, la densidad de corriente de corrosión puede ser determinada mediante el uso de la ecuación de Stern – Geary (Stern y Geary., 1957; 1997, Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM G – 59, EE.UU).

\[i_{CORR} = \beta/Rp \]
\[\beta = (ba.bc)/[2,303(ba + bc)] \]

dónde:

- \(i_{CORR} \) = densidad de corriente de corrosión (µA/cm\(^2\))
- \(Rp \) = resistencia a la polarización (Ω.cm\(^2\))
- \(ba \) = pendiente anódica de Tafel (V).
- \(bc \) = pendiente catódica de Tafel (V).

La ecuación de Stern y Geary (ec. 1) establece la relación entre la densidad de corriente de corrosión (icorr), es decir, la velocidad de corrosión, con la resistencia a la polarización. Esta ecuación recuerda la conocida Ley de Ohm, donde se establece que la diferencia de potencial entre dos puntos resulta en un flujo de corriente limitado por la presencia de una resistencia.

La constante B en la ecuación (2) sirve para pasar de la proporcionalidad a la igualdad y presenta una relación existente entre las pendientes de Tafel. Queda claro a partir de esta relación, que es indispensable que exista el comportamiento tafeliano en el sistema electroquímico.

1.2.4 VELOCIDAD DE CORROSIÓN.

Es la resistencia a la degradación de un determinado metal o aleación en un medio ambiente específico. Basándose en ensayos en el laboratorio, se pueden llegar a establecer las condiciones ambientales más fielmente parecidas a la realidad y por tanto, estudiar el comportamiento de un metal o varios metales en este medio.

La velocidad de corrosión se ve acelerada por diversos factores, como son la existencia de una capa de humedad sobre el metal, la existencia
de contaminantes, el régimen de vientos, la Ta, etc. Debido a la compleja relación que existe entre estas variables, los ensayos más utilizados para determinar el nivel de corrosividad de una zona determinada consisten en exponer estaciones de corrosión con muestras metálicas del metal que se quiera estudiar. El método utilizado tradicionalmente, es el de medida de la pérdida de peso, el cual consiste en determinar la pérdida de peso que ha experimentado un determinado metal o aleación en contacto con un medio corrosivo. Hoy en día aparatos como el potenciostato galvanostato arrojan las velocidades de corrosión en cada prueba que se ejecuta, también existe la posibilidad de determinar este valor conociendo la densidad de corriente, que también es suministrada por estos equipos, haciendo uso de la siguiente ecuación.

La velocidad de corrosión se puede determinar de la siguiente forma:

\[V_{CORR} = 3.27 \times 10^{-3} \left(i_{CORR}.PE/\rho \right) \]

Ec.(3)

dónde:

\(V_{CORR} \) = velocidad de corrosión (mpy).
\(PE \) = peso equivalente del material (g)
\(\rho \) = densidad del material (g/cm\(^3\))

2 METODOLOGÍA
La metodología experimental empleada durante el desarrollo de esta investigación fue encaminada al estudio del comportamiento de la aleación cobre berilio C17200 ante un tratamiento térmico ante la corrosión. La cinética de corrosión se evaluó mediante las técnicas electroquímicas de resistencia a la polarización lineal (RPL) y extrapolación de tafel.

2.1 REVISION BIBLIOGRAFICA

Se realizó una completa revisión del estado del arte en lo referente a: la aleación de cobre berilio C17200, tratamientos térmicos, corrosión, técnicas electroquímicas de resistencia a la polarización lineal (RPL) y extrapolación de tafel, en revistas nacionales e internacionales, revistas indexadas, libros, bases de datos disponibles en internet.
2.2 MATERIALES Y EQUIPOS

2.2.1 ELECTRODOS DE TRABAJO.
Se cortará una lámina de aleación aleación cobre berilio C17200 cuya composición química se encuentra en la tabla 2, en 19 probetas de 20 mm x 11 mm el espesor de la lamina es de 2 mm figura 4.

![FIGURA 4 Dimensiones de la probeta.](image1.png)

2.2.2 ELECTRODOS DE REFERENCIA Y CONTRAECTRODO.
como electrodos de referencia y contraelectrodo se utilizó alambre de platino de alta pureza y grafito figura 5.

![FIGURA 5 . Alambre de platino de alta pureza y grafito.](image2.png)

2.2.3 AGENTE CORROSIVO.
El medio agresivo para realizar la pruebas de corrosión fue salmuera, un litro de agua destilada con 35 gramos de sal (NaCl).

2.2.4 HORNO.
Para realizar el tratamiento térmico a las probetas de la aleación cobre berilio C17200 se utilizó un horno modelo E S de industrias terrígeno de 7000 vatios el cual alcanza una temperatura de 1200 grados Celsius Figura 6.
2.2.5 CELDA DE PRUEBA.
Se utilizó una celda de acrílico de 10 cm x 10 cm x 10 cm figura 7.

2.3 EQUIPO PARA ENSAYOS ELECTROQUÍMICOS.
Para el desarrollo de los ensayos electroquímicos de resistencia a la polarización lineal (Rp) y la extrapolación de tafel se hará uso del potenciostato - galvanostato PG-TEKCORR 4.2 USB, ver figura 8, que será calibrado antes de realizar cada prueba.
2.4 TRATAMIENTO TÉRMICO A LAS PROBETAS.
En el horno modelo E S de industrias terrígeno se realizó los tratamientos térmicos a cada probeta de acuerdo al tratamiento térmico, tiempo de sostenimiento y temperatura se le dio un nombre la probeta como se puede observar en la tabla 2.

<table>
<thead>
<tr>
<th>Número de probeta</th>
<th>Temperatura de solubilización (ºC)</th>
<th>Tiempo se solubilizó (h)</th>
<th>Medio de enfriamiento solubilización</th>
<th>Temperatura de envejecido (ºC)</th>
<th>Tiempo de envejecido (h)</th>
<th>Medio de enfriamiento envejecido</th>
</tr>
</thead>
<tbody>
<tr>
<td>T750</td>
<td>750</td>
<td>1</td>
<td>Agua</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>T800</td>
<td>800</td>
<td>1</td>
<td>Agua</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>T850</td>
<td>850</td>
<td>1</td>
<td>Agua</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>N750</td>
<td>750</td>
<td>1</td>
<td>Aire</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>N800</td>
<td>800</td>
<td>1</td>
<td>Aire</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>N850</td>
<td>850</td>
<td>1</td>
<td>Aire</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>T750E1 H</td>
<td>750</td>
<td>1</td>
<td>Agua</td>
<td>300</td>
<td>1</td>
<td>Aire</td>
</tr>
<tr>
<td>T750E2 H</td>
<td>750</td>
<td>1</td>
<td>Agua</td>
<td>300</td>
<td>2</td>
<td>Aire</td>
</tr>
<tr>
<td>T750E3 H</td>
<td>750</td>
<td>1</td>
<td>Agua</td>
<td>300</td>
<td>3</td>
<td>Aire</td>
</tr>
</tbody>
</table>

FIGURA 8 Potenciostato-Galvanostato PG-TEKCORR 4.2 USB.
TABLA 2. tratamiento térmico de las probetas de cobre berilio C17200

<table>
<thead>
<tr>
<th>Número de probeta</th>
<th>Temperatura de solubilización (ºC)</th>
<th>Tiempo se solubilizó (h)</th>
<th>Medio de enfriamiento solubilizació</th>
<th>Temperatura de envejecido (ºC)</th>
<th>Tiempo de envejecido (h)</th>
<th>Medio de enfriamiento envejecido</th>
</tr>
</thead>
<tbody>
<tr>
<td>T800E1 H</td>
<td>800</td>
<td>1</td>
<td>Agua</td>
<td>300</td>
<td>1</td>
<td>Aire</td>
</tr>
<tr>
<td>T800E2 H</td>
<td>800</td>
<td>1</td>
<td>Agua</td>
<td>300</td>
<td>2</td>
<td>Aire</td>
</tr>
<tr>
<td>T800E3 H</td>
<td>800</td>
<td>1</td>
<td>Agua</td>
<td>300</td>
<td>3</td>
<td>Aire</td>
</tr>
<tr>
<td>T850E1 H</td>
<td>850</td>
<td>1</td>
<td>Agua</td>
<td>300</td>
<td>1</td>
<td>Aire</td>
</tr>
<tr>
<td>T850E2 H</td>
<td>850</td>
<td>1</td>
<td>Agua</td>
<td>300</td>
<td>2</td>
<td>Aire</td>
</tr>
<tr>
<td>T850E3 H</td>
<td>850</td>
<td>1</td>
<td>Agua</td>
<td>300</td>
<td>3</td>
<td>Aire</td>
</tr>
<tr>
<td>N7501 H</td>
<td>750</td>
<td>1</td>
<td>Aire</td>
<td>300</td>
<td>1</td>
<td>Aire</td>
</tr>
<tr>
<td>N8001 H</td>
<td>800</td>
<td>1</td>
<td>Aire</td>
<td>300</td>
<td>1</td>
<td>Aire</td>
</tr>
<tr>
<td>N8501 H</td>
<td>850</td>
<td>1</td>
<td>Aire</td>
<td>300</td>
<td>1</td>
<td>Aire</td>
</tr>
</tbody>
</table>

2.5 MEDICIONES ELECTROQUÍMICAS.

A fin de obtener valores de resistencia a la polarización lineal (Rp) y la extrapolación de tafel para obtener la velocidad de corrosión para cada una de las probetas de aleación cobre berilio C17200 nombradas en la tabla 2 la toma de datos se realizará a las 0 horas, 24 horas y 48 horas de exposición a salmuera al 3,5%.

Para dar inicio a cada prueba se realizan las conexiones con el equipo electroquímico figura 9 y se introduce los datos requeridos por el software de potenciómetro - galvanostato PG-TEKCORR 4.2 USB figura 10 para hacer las mediciones correspondientes.
FIGURA 9 conexiones con el equipo electroquímico.

FIGURA 10 parámetros requeridos por el software

2.5.1 CÁLCULO DEL AREA EN cm^2
El área requerida por el software es la que corresponde al área atacada por medio corrosivo, para este caso en particular es salmuera para el cálculo del área es necesario determinar el diámetro de contacto el cual se muestra en la figura 11 para utilizar la ecuación 4
Ahora se reemplaza los valores de la ecuación 4.

\[
\text{Area} = \frac{\pi \times (0.909\,cm)^2}{4}
\]
\[
\text{Area} = 0.649\,cm^2
\]

2.5.2 CÁLCULO DEL PESO EQUIVALENTE.

Para el cálculo del peso equivalente se utilizó la ecuación 5 y la ecuación 6 también fue necesario el uso de la composición química de la aleación cobre berilio C17200 tabla 3.

\[
P.E = \frac{1}{N.eq}
\]
\[
N.eq = \sum \frac{f_i}{n_i/q_i} = \sum \frac{f_i n_i}{Q_i}
\]

\(f_i\): Fracción de masa.
\(n_i\): Intercambio de electrones (Electrones de valencia).
\(Q_i\): Peso atómico.

<table>
<thead>
<tr>
<th>%Be</th>
<th>%Co</th>
<th>%Ni</th>
<th>%Fe</th>
<th>%Al</th>
<th>%Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,5</td>
<td>0,225</td>
<td>0,15</td>
<td>0,15</td>
<td>96,975</td>
</tr>
</tbody>
</table>

TABLA 3 composición química de la aleación cobre berilio C17200.

Para determinar los electrones de valencia y el peso atómico se utilizó la tabla periódica figura 12.
Ahora se reemplaza los valores obtenidos en la ecuación 5 y ecuación 6.

\[
N_{eq} = \frac{2 \times 2}{9,01218} + \frac{0,5 \times 2}{58,9332} + \frac{0,225 \times 2}{58,693} + \frac{0,15 \times 2}{55,845} + \frac{0,15 \times 3}{26,982} + \frac{96,975 \times 1}{63,546}
\]

\[
P.E = \frac{1}{2,01659} = 0,495887 \text{ gr}
\]

2.5.3 LA DENSIDAD.
La densidad de la aleación cobre berilio C17200 fue suministrada por el proveedor la cual corresponde a 8,25 gr/cm^3

2.5.4 Resistencia a la polarización lineal (RPL).
la técnica de resistencia a la polarización lineal fue aplicada bajo los siguientes parámetros de operación.
- Barrido de potencial de □5 mV. a partir del potencial de corrosión (E CORR).
- Velocidad de Barrido de 5 mV/min.

2.5.5 Espectroscopia de Impedancia Electroquímica (EIE).
Para la aplicación de la técnica de EIE se tuvieron en cuenta los siguientes parámetros.
- Barrido de frecuencia de 0,01 hasta 10000Hz.
- Amplitud de 5 mv
3. RESULTADOS Y ANALISIS

Los resultados obtenidos del estudio del comportamiento electroquímico de diferentes probetas de aleación cobre berilio C17200 sometidas a tratamientos térmicos como se muestra en la tabla 2. Sometidas a un medio corrosivo de salmuera al 3.5% se presentan a continuación.

3.1 CARACTERIZACIÓN DEL MATERIAL BASE

El material base usado durante el desarrollo de esta investigación fue la aleación de cobre berilio C17200 en la tabla 3 se muestra su composición química.

<table>
<thead>
<tr>
<th>%Be</th>
<th>%Co</th>
<th>%Ni</th>
<th>%Fe</th>
<th>%Al</th>
<th>%Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,5</td>
<td>0,225</td>
<td>0,15</td>
<td>0,15</td>
<td>96,975</td>
</tr>
</tbody>
</table>

TABLA 3 composición química de la aleación cobre berilio C17200.

Se revelo mediante el análisis metalográfico (figura 13) los límites del grano en la aleación cobre berilio C17200 y como intersticialmente hay berilio

FIGURA 13 Micrografía cobre berilio C17200

100x 200x
3.2 CURVAS DE POLARIZACIÓN Ó EXTRAPOLACIÓN DE TAFEL.
Las curvas de polarización o extrapolación de tafel obtenidas al someter las probetas de aleación cobre berilio C17200 a salmuera al 3.5% después de ser sometidas a tratamientos térmicos mostrados en la tabla 2. Se muestran en las figuras 14 al 17 las cuales son necesarias para analizar la cinemática de la corrosión.

FIGURA 14 Curva de polarización aleación cobre berilio C17200 muestra N800

FIGURA 15 Curva de polarización aleación cobre berilio C17200 muestra T750E1H
FIGURA 16 Curva de polarización aleación cobre berilio C17200 muestra T800E3

FIGURA 17 Curva de polarización aleación cobre berilio C17200 muestra Estado de suministro

La constante de Stern - Geary β corresponde a una constante adimensional que se determina a partir de los valores de las
pendientes de Tafel anódica (β_a) y catódica (β_c), de la siguiente forma:

$$\beta = \frac{\beta_a \cdot \beta_c}{2,303 + (\beta_a + \beta_c)}$$

<table>
<thead>
<tr>
<th>Probeta</th>
<th>β_a</th>
<th>β_c</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado de suministro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T750</td>
<td>0.02646</td>
<td>-0.02639</td>
<td>-4.33148936</td>
</tr>
<tr>
<td>T800</td>
<td>0.02336</td>
<td>-0.02362</td>
<td>0.92147901</td>
</tr>
<tr>
<td>T850</td>
<td>0.03124</td>
<td>-0.03112</td>
<td>-3.51783471</td>
</tr>
<tr>
<td>N750</td>
<td>0.03644</td>
<td>-0.03629</td>
<td>-3.82807237</td>
</tr>
<tr>
<td>N800</td>
<td>0.02177</td>
<td>-0.02113</td>
<td>-0.31209299</td>
</tr>
<tr>
<td>N850</td>
<td>0.02824</td>
<td>-0.02839</td>
<td>2.32083833</td>
</tr>
<tr>
<td>T750E1H</td>
<td>0.04515</td>
<td>-0.04545</td>
<td>2.97013678</td>
</tr>
<tr>
<td>T750E2H</td>
<td>0.04096</td>
<td>-0.04002</td>
<td>-0.75720808</td>
</tr>
<tr>
<td>T750E3H</td>
<td>0.02049</td>
<td>-0.02058</td>
<td>2.0346809</td>
</tr>
<tr>
<td>T800E1H</td>
<td>0.02224</td>
<td>-0.02262</td>
<td>0.5748438</td>
</tr>
<tr>
<td>T800E2H</td>
<td>0.04406</td>
<td>-0.04359</td>
<td>-1.77435112</td>
</tr>
<tr>
<td>T800E3H</td>
<td>0.01853</td>
<td>-0.01883</td>
<td>0.50502229</td>
</tr>
<tr>
<td>T850E1H</td>
<td>0.02365</td>
<td>-0.02339</td>
<td>-0.9238343</td>
</tr>
<tr>
<td>T850E2H</td>
<td>0.02901</td>
<td>-0.02921</td>
<td>1.83973535</td>
</tr>
<tr>
<td>T850E3H</td>
<td>0.03218</td>
<td>-0.03263</td>
<td>1.01320345</td>
</tr>
<tr>
<td>N7501H</td>
<td>0.03408</td>
<td>-0.03427</td>
<td>2.66910803</td>
</tr>
<tr>
<td>N8001H</td>
<td>0.0391</td>
<td>-0.0399</td>
<td>0.84677052</td>
</tr>
<tr>
<td>N8501H</td>
<td>0.02104</td>
<td>-0.02152</td>
<td>0.40959328</td>
</tr>
</tbody>
</table>

TABLA 5 Valores de las constantes de Tafel anódica (β_a), catódica (β_c) y constante de Stern – Geary (β) a 0 horas.
<table>
<thead>
<tr>
<th>Probeta</th>
<th>β_a</th>
<th>β_c</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado de suministro</td>
<td>0.04691</td>
<td>-0.04687</td>
<td>-23.8674739</td>
</tr>
<tr>
<td>T750</td>
<td>0.02919</td>
<td>-0.02999</td>
<td>0.475145517</td>
</tr>
<tr>
<td>T800</td>
<td>0.02165</td>
<td>-0.02199</td>
<td>0.608009374</td>
</tr>
<tr>
<td>T850</td>
<td>0.03344</td>
<td>-0.03337</td>
<td>-6.92198251</td>
</tr>
<tr>
<td>N750</td>
<td>0.02417</td>
<td>-0.0243</td>
<td>1.96175891</td>
</tr>
<tr>
<td>N800</td>
<td>0.02496</td>
<td>-0.0247</td>
<td>-1.02961355</td>
</tr>
<tr>
<td>N850</td>
<td>0.0294</td>
<td>-0.02922</td>
<td>-2.07234043</td>
</tr>
<tr>
<td>T750E1H</td>
<td>0.04189</td>
<td>-0.04163</td>
<td>-2.91238969</td>
</tr>
<tr>
<td>T750E2H</td>
<td>0.02874</td>
<td>-0.02856</td>
<td>-1.98006079</td>
</tr>
<tr>
<td>T750E3H</td>
<td>0.03447</td>
<td>-0.03491</td>
<td>1.187529803</td>
</tr>
<tr>
<td>T800E1H</td>
<td>0.04098</td>
<td>-0.04094</td>
<td>-18.2123448</td>
</tr>
<tr>
<td>T800E2H</td>
<td>0.02135</td>
<td>-0.02147</td>
<td>1.658649949</td>
</tr>
<tr>
<td>T800E3H</td>
<td>0.02111</td>
<td>-0.02144</td>
<td>0.595532046</td>
</tr>
<tr>
<td>T850E1H</td>
<td>0.03132</td>
<td>-0.03171</td>
<td>1.105756371</td>
</tr>
<tr>
<td>T850E2H</td>
<td>0.04147</td>
<td>-0.04124</td>
<td>-3.22872397</td>
</tr>
<tr>
<td>T850E3H</td>
<td>0.05082</td>
<td>-0.05052</td>
<td>-3.71606079</td>
</tr>
<tr>
<td>N7501H</td>
<td>0.03555</td>
<td>-0.03864</td>
<td>0.193029775</td>
</tr>
<tr>
<td>N8001H</td>
<td>0.03662</td>
<td>-0.03606</td>
<td>-1.02391074</td>
</tr>
<tr>
<td>N8501H</td>
<td>0.02456</td>
<td>-0.02423</td>
<td>-0.78302188</td>
</tr>
</tbody>
</table>

TABLA 6 Valores de las constantes de Tafel anódica (β_a), catódica (β_c) y constante de Stern – Geary (β) a 24 horas.
<table>
<thead>
<tr>
<th>Probeta</th>
<th>(\beta_a)</th>
<th>(\beta_c)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T750E2H</td>
<td>0.02504</td>
<td>-0.02514</td>
<td>2.73341554</td>
</tr>
<tr>
<td>T750E3H</td>
<td>0.02965</td>
<td>-0.02979</td>
<td>2.73951213</td>
</tr>
<tr>
<td>T800E1H</td>
<td>0.04313</td>
<td>-0.04386</td>
<td>1.12520405</td>
</tr>
<tr>
<td>T800E2H</td>
<td>0.0188</td>
<td>-0.01999</td>
<td>0.13712914</td>
</tr>
<tr>
<td>T800E3H</td>
<td>0.02184</td>
<td>-0.02138</td>
<td>-0.44076649</td>
</tr>
<tr>
<td>T850E1H</td>
<td>0.03072</td>
<td>-0.03045</td>
<td>-1.50435664</td>
</tr>
<tr>
<td>T850E2H</td>
<td>0.06448</td>
<td>-0.06408</td>
<td>-4.48532175</td>
</tr>
<tr>
<td>T850E3H</td>
<td>0.041</td>
<td>-0.04175</td>
<td>0.9910262</td>
</tr>
<tr>
<td>N7501H</td>
<td>0.03388</td>
<td>-0.03164</td>
<td>-0.20779635</td>
</tr>
<tr>
<td>N8001H</td>
<td>0.02114</td>
<td>-0.0211</td>
<td>-4.84209726</td>
</tr>
<tr>
<td>N8501H</td>
<td>0.02404</td>
<td>-0.0243</td>
<td>0.97560373</td>
</tr>
</tbody>
</table>

TABLA 7 Valores de las constantes de Tafel anódica \(\beta_a\), catódica \(\beta_c\) y constante de Stern – Geary \(\beta\) a 48 horas.

3.3 RESISTENCIA A LA POLARIZACIÓN LINEAL (RPL).
Los diagramas de resistencia a la polarización lineal obtenidos al someter a corrosión a las probetas de aleación cobre berilio C17200 se muestran en las figuras 18 a la 21.

![Diagrama de Resistencia a la Polarización Lineal probeta N750](image-url)
figura 19 Diagrama de Resistencia a la Polarización Lineal probeta N800

figura 20 Diagrama de Resistencia a la Polarización Lineal probeta T800E2H
figura 21 Diagrama de Resistencia a la Polarización Lineal probeta T850E3H

<table>
<thead>
<tr>
<th>Probeta</th>
<th>Rp (Ohm)</th>
<th>Icorr (mA/cm²)</th>
<th>Vcorr (mpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado de suministro</td>
<td>1290</td>
<td>0.00445</td>
<td>53.10</td>
</tr>
<tr>
<td>T750</td>
<td>697.65</td>
<td>0.00707</td>
<td>84.39</td>
</tr>
<tr>
<td>T800</td>
<td>1870</td>
<td>0.00273</td>
<td>32.58</td>
</tr>
<tr>
<td>T850</td>
<td>1050</td>
<td>0.00647</td>
<td>77.2</td>
</tr>
<tr>
<td>N750</td>
<td>8220</td>
<td>0.0096039</td>
<td>11.46</td>
</tr>
<tr>
<td>N800</td>
<td>906.57</td>
<td>0.00514</td>
<td>61.28</td>
</tr>
<tr>
<td>N850</td>
<td>1590</td>
<td>0.00388</td>
<td>46.24</td>
</tr>
<tr>
<td>T750E1H</td>
<td>3460</td>
<td>0.00285</td>
<td>33.95</td>
</tr>
<tr>
<td>T750E2H</td>
<td>1880</td>
<td>0.00467</td>
<td>55.77</td>
</tr>
<tr>
<td>T750E3H</td>
<td>112.25</td>
<td>0.03972</td>
<td>473.89</td>
</tr>
<tr>
<td>T800E1H</td>
<td>6860</td>
<td>0.00071005</td>
<td>8.47</td>
</tr>
<tr>
<td>T800E2H</td>
<td>1300</td>
<td>0.00731</td>
<td>87.21</td>
</tr>
<tr>
<td>T800E3H</td>
<td>10380</td>
<td>0.00039077</td>
<td>4.66</td>
</tr>
<tr>
<td>T850E1H</td>
<td>5720</td>
<td>0.00112</td>
<td>13.36</td>
</tr>
<tr>
<td>T850E2H</td>
<td>12170</td>
<td>0.00051911</td>
<td>6.19</td>
</tr>
<tr>
<td>T850E3H</td>
<td>2320</td>
<td>0.00303</td>
<td>36.18</td>
</tr>
<tr>
<td>N7501H</td>
<td>34330</td>
<td>0.00021613</td>
<td>2.58</td>
</tr>
<tr>
<td>N8001H</td>
<td>2190</td>
<td>0.00391</td>
<td>46.64</td>
</tr>
<tr>
<td>N8501H</td>
<td>1370</td>
<td>0.00338</td>
<td>40.28</td>
</tr>
</tbody>
</table>

TABLA 8 Valores de Resistencia a la Transferencia de Carga (R_{tc}), Corriente de Corrosión (Icorr) y Velocidad de Corrosión (Vcorr) a las
0 Horas.

<table>
<thead>
<tr>
<th>Probeta</th>
<th>Rp (Ohm)</th>
<th>Icorr (mA/cm2)</th>
<th>Vcorr (mpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado de suministro</td>
<td>1150</td>
<td>0.00883</td>
<td>105.37</td>
</tr>
<tr>
<td>T750</td>
<td>2230</td>
<td>0.00288</td>
<td>34.32</td>
</tr>
<tr>
<td>T800</td>
<td>3970</td>
<td>0.00119</td>
<td>14.24</td>
</tr>
<tr>
<td>T850</td>
<td>76.02</td>
<td>0.09540</td>
<td>1140</td>
</tr>
<tr>
<td>N750</td>
<td>9750</td>
<td>0.00053955</td>
<td>6.44</td>
</tr>
<tr>
<td>N800</td>
<td>2730</td>
<td>0.000198</td>
<td>23.59</td>
</tr>
<tr>
<td>N850</td>
<td>1970</td>
<td>0.00324</td>
<td>38.60</td>
</tr>
<tr>
<td>T750E1H</td>
<td>6290</td>
<td>0.00144</td>
<td>17.19</td>
</tr>
<tr>
<td>T750E2H</td>
<td>3850</td>
<td>0.00161</td>
<td>19.26</td>
</tr>
<tr>
<td>T750E3H</td>
<td>5130</td>
<td>0.00147</td>
<td>17.51</td>
</tr>
<tr>
<td>T800E1H</td>
<td>5990</td>
<td>0.00148</td>
<td>17.71</td>
</tr>
<tr>
<td>T800E2H</td>
<td>2520</td>
<td>0.00184</td>
<td>21.98</td>
</tr>
<tr>
<td>T800E3H</td>
<td>8010</td>
<td>0.00057655</td>
<td>6.88</td>
</tr>
<tr>
<td>T850E1H</td>
<td>5030</td>
<td>0.00136</td>
<td>16.23</td>
</tr>
<tr>
<td>T850E2H</td>
<td>6960</td>
<td>0.00129</td>
<td>15.39</td>
</tr>
<tr>
<td>T850E3H</td>
<td>1600</td>
<td>0.00687</td>
<td>81.91</td>
</tr>
<tr>
<td>N7501H</td>
<td>16930</td>
<td>0.00047479</td>
<td>5.667</td>
</tr>
<tr>
<td>N8001H</td>
<td>3310</td>
<td>0.00238</td>
<td>28.43</td>
</tr>
<tr>
<td>N8501H</td>
<td>641.78</td>
<td>0.00825</td>
<td>98.46</td>
</tr>
</tbody>
</table>

TABLA 9 Valores de Resistencia a la Transferencia de Carga (Rtc), Corriente de Corrosión (Icorr) y Velocidad de Corrosión (Vcorr) a las 24 Horas.

<table>
<thead>
<tr>
<th>Probeta</th>
<th>Rp (Ohm)</th>
<th>Icorr (mA/cm2)</th>
<th>Vcorr (mpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado de suministro</td>
<td>768.75</td>
<td>0.01086</td>
<td>129.56</td>
</tr>
<tr>
<td>T750</td>
<td>2820</td>
<td>0.00275</td>
<td>32.84</td>
</tr>
<tr>
<td>T800</td>
<td>4500</td>
<td>0.00133</td>
<td>15.86</td>
</tr>
<tr>
<td>T850</td>
<td>3940</td>
<td>0.00152</td>
<td>18.17</td>
</tr>
<tr>
<td>N750</td>
<td>8060</td>
<td>0.00079492</td>
<td>9.48</td>
</tr>
<tr>
<td>N800</td>
<td>2000</td>
<td>0.00211</td>
<td>25.12</td>
</tr>
<tr>
<td>Probeta</td>
<td>Rp (Ohm)</td>
<td>Icorr (mA/cm²)</td>
<td>Vcorr (mpy)</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>N850</td>
<td>1870</td>
<td>0.00470</td>
<td>56.02</td>
</tr>
<tr>
<td>T750E1H</td>
<td>6330</td>
<td>0.00096819</td>
<td>11.55</td>
</tr>
<tr>
<td>T750E2H</td>
<td>1120</td>
<td>0.00487</td>
<td>58.08</td>
</tr>
<tr>
<td>T750E3H</td>
<td>213.16</td>
<td>0.03027</td>
<td>361.17</td>
</tr>
<tr>
<td>T800E1H</td>
<td>5030</td>
<td>0.00188</td>
<td>22.39</td>
</tr>
<tr>
<td>T800E2H</td>
<td>2610</td>
<td>0.00161</td>
<td>19.25</td>
</tr>
<tr>
<td>T800E3H</td>
<td>5270</td>
<td>0.00089101</td>
<td>10.63</td>
</tr>
<tr>
<td>T850E1H</td>
<td>5670</td>
<td>0.00117</td>
<td>13.96</td>
</tr>
<tr>
<td>T850E2H</td>
<td>8070</td>
<td>0.00173</td>
<td>20.64</td>
</tr>
<tr>
<td>T850E3H</td>
<td>1600</td>
<td>0.00562</td>
<td>67.11</td>
</tr>
<tr>
<td>N7501H</td>
<td>4590</td>
<td>0.00154</td>
<td>18.39</td>
</tr>
<tr>
<td>N8001H</td>
<td>3310</td>
<td>0.00139</td>
<td>16.55</td>
</tr>
<tr>
<td>N8501H</td>
<td>1580</td>
<td>0.00332</td>
<td>39.61</td>
</tr>
</tbody>
</table>

TABLA 10 Valores de Resistencia a la Transferencia de Carga (R_{tc}), Corriente de Corrosión (Icorr) y Velocidad de Corrosión (Vcorr) a las 48 Horas.

figura 22 Diagrama de barras de la velocidad de corrosión vs el período de exposición de cada una de las probetas analizadas.
La probeta T850 la cual corresponde a un tratamiento térmico de temple en agua con una temperatura de 850 grados Celsius presenta la mayor velocidad de corrosión a las 24 horas de exposición creando una capa protectora en el material generando una gran disminución en la velocidad de corrosión a las 48 horas de exposición.

La probeta sometida a un tratamiento térmico de normalizado a 750 grados celcius correspondiente a la N750 es la probeta que presento menor velocidad de corrosión a la 24 y 48 hora de exposición.
4 CONCLUSIONES

➢ Se estudió el comportamiento electroquímico de la aleación cobre berilio C17200 sometida a tratamientos térmicos, empleando satisfactoriamente las técnicas electroquímicas de resistencia a la polarización lineal (RPL) y Extrapolación de tafel.

➢ La aleación cobre berilio C17200 es una aleación con gran resistencia a la corrosión eso se puede evidenciar en la cinemática de la corrosión en esta aleación.

➢ La probeta sometida a tratamiento térmico de normalizado a 750 grados Celsius presentó una menor velocidad de corrosión correspondiente a 6.44 mpy a las 24 horas de exposición y 9.48 mpy a las 48 horas con una diferencia de 16 y 13 menos que la velocidad correspondiente a la de la probeta en estado de suministro.

➢ Se evidenció que en todas las probetas sometidas a tratamiento térmico excepto en la T750E3H se presentó una diferencia en la cinemática de la corrosión de por lo menos el doble de la obtenida en estado de suministro a las 48 horas de exposición por lo cual se muestra que el tratamiento térmico tiene un impacto positivo en la cinemática de la corrosión en la aleación cobre berilio C17200.

➢ Cuando se presenta un gran aumento de la cinemática de la corrosión en determinadas horas de exposición y Después se presenta una gran disminución de la misma esto es producto de que se crea una capa protectora de oxido evitando de que continúe la corrosión en la probeta.
5 BIBLIOGRAFIA